Show simple item record

Modeling subauroral polarization streams during the 17 March 2013 storm

dc.contributor.authorYu, Yiqunen_US
dc.contributor.authorJordanova, Vaniaen_US
dc.contributor.authorZou, Shashaen_US
dc.contributor.authorHeelis, Rodericken_US
dc.contributor.authorRuohoniemi, Mikeen_US
dc.contributor.authorWygant, Johnen_US
dc.date.accessioned2015-05-04T20:36:16Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationYu, Yiqun; Jordanova, Vania; Zou, Shasha; Heelis, Roderick; Ruohoniemi, Mike; Wygant, John (2015). "Modeling subauroral polarization streams during the 17 March 2013 storm." Journal of Geophysical Research: Space Physics 120(3): 1738-1750.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111134
dc.description.abstractThe subauroral polarization streams (SAPS) are one of the most important features in representing magnetosphere‐ionosphere coupling processes. In this study, we use a state‐of‐the‐art modeling framework that couples an inner magnetospheric ring current model RAM‐SCB with a global MHD model Block‐Adaptive Tree Solar‐wind Roe Upwind Scheme (BATS‐R‐US) and an ionospheric potential solver to study the SAPS that occurred during the 17 March 2013 storm event as well as to assess the modeling capability. Both ionospheric and magnetospheric signatures associated with SAPS are analyzed to understand the spatial and temporal evolution of the electrodynamics in the midlatitude regions. Results show that the model captures the SAPS at subauroral latitudes, where Region 2 field‐aligned currents (FACs) flow down to the ionosphere and the conductance is lower than in the higher‐latitude auroral zone. Comparisons to observations such as FACs observed by Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), cross‐track ion drift from Defense Meteorological Satellite Program (DMSP), and in situ electric field observations from the Van Allen Probes indicate that the model generally reproduces the global dynamics of the Region 2 FACs, the position of SAPS along the DMSP, and the location of the SAPS electric field around L of 3.0 in the inner magnetosphere near the equator. The model also demonstrates double westward flow channels in the dusk sector (the higher‐latitude auroral convection and the subauroral SAPS) and captures the mechanism of the SAPS. However, the comparison with ion drifts along DMSP trajectories shows an underestimate of the magnitude of the SAPS and the sensitivity to the specific location and time. The comparison of the SAPS electric field with that measured from the Van Allen Probes shows that the simulated SAPS electric field penetrates deeper than in reality, implying that the shielding from the Region 2 FACs in the model is not well represented. Possible solutions in future studies to improve the modeling capability include implementing a self‐consistent ionospheric conductivity module from inner magnetosphere particle precipitation, coupling with the thermosphere‐ionosphere chemical processes, and connecting the ionosphere with the inner magnetosphere by the stronger Region 2 FACs calculated in the inner magnetosphere model.Key PointsSAPS simulation using BATS‐R‐US coupled with ring current model RAM‐SCBComparisons done with AMPERE, DMSP, and Van Allen Probes observationsCaptured the basic physics and mechanism of SAPSen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othersubauroral polarization streamsen_US
dc.subject.othersubauroral electrodynamicsen_US
dc.subject.otherinner magnetosphereen_US
dc.subject.otherionosphere magnetosphere couplingen_US
dc.titleModeling subauroral polarization streams during the 17 March 2013 stormen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111134/1/jgra51638.pdf
dc.identifier.doi10.1002/2014JA020371en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSpiro, R. W., R. A. Heelis, and W. B. Hanson ( 1978 ), Ion convection and the formation of the mid‐latitude F region ionization trough, J. Geophys. Res., 83 ( A9 ), 4255 – 4264, doi: 10.1029/JA083iA09p04255.en_US
dc.identifier.citedreferenceJordanova, V. K., D. T. Welling, S. G. Zaharia, L. Chen, and R. M. Thorne ( 2012 ), Modeling ring current ion and electron dynamics and plasma instabilities during a high‐speed stream driven storm, J. Geophys. Res., 117, A00L08, doi: 10.1029/2011JA017433.en_US
dc.identifier.citedreferenceKarlsson, T., G. T. Marklund, L. G. Blomberg, and A. Mälkki ( 1998 ), Subauroral electric fields observed by the Freja satellite: A statistical study, J. Geophys. Res., 103 ( A3 ), 4327 – 4341, doi: 10.1029/97JA00333.en_US
dc.identifier.citedreferenceLemon, C., F. Toffoletto, M. Hesse, and J. Birn ( 2003 ), Computing magnetospheric force equilibria, J. Geophys. Res., 108 ( A6 ), 1237, doi: 10.1029/2002JA009702.en_US
dc.identifier.citedreferenceOksavik, K., R. A. Greenwald, J. M. Ruohoniemi, M. R. Hairston, L. J. Paxton, J. B. H. Baker, J. W. Gjerloev, and R. J. Barnes ( 2006 ), First observations of the temporal/spatial variation of the sub‐auroral polarization stream from the SUPERDARN wallops hf radar, Geophys. Res. Lett., 33, L12104, doi: 10.1029/2006GL026256.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. D. Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceRichmond, A. D., and Y. Kamide ( 1988 ), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93 ( A6 ), 5741 – 5759, doi: 10.1029/JA093iA06p05741.en_US
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, and D. L. D. Zeeuw ( 2004 ), Ionospheric control of the magnetospheric configuration: Conductance, Ann. Geophys., 22, 567 – 584.en_US
dc.identifier.citedreferenceRowland, D. E., and J. R. Wygant ( 1998 ), Dependence of the large‐scale, inner magnetospheric electric field on geomagnetic activity, J. Geophys. Res., 103 ( A7 ), 14,959 – 14,964, doi: 10.1029/97JA03524.en_US
dc.identifier.citedreferenceRuohoniemi, J. M., and K. B. Baker ( 1998 ), Large‐scale imaging of high‐latitude convection with super dual auroral radar network hf radar observations, J. Geophys. Res., 103 ( A9 ), 20,797 – 20,811, doi: 10.1029/98JA01288.en_US
dc.identifier.citedreferenceSouthwood, D. J., and R. A. Wolf ( 1978 ), An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res., 83 ( A11 ), 5227 – 5232, doi: 10.1029/JA083iA11p05227.en_US
dc.identifier.citedreferenceSpence, H., et al. ( 2013 ), Science goals and overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) suite on NASA's Van Allen Probes mission, Space Sci. Rev., 179, 311 – 336, doi: 10.1007/s11214-013-0007-5.en_US
dc.identifier.citedreferenceThomsen, M. F., H. Korth, and R. C. Elphic ( 2002 ), Upper cutoff energy of the electron plasma sheet as a measure of magnetospheric convection strength, J. Geophys. Res., 107 ( A10 ), 1331, doi: 10.1029/2001JA000148.en_US
dc.identifier.citedreferenceToffoletto, F., S. Sazykin, R. Spiro, and R. Wolf ( 2003 ), Inner magnetospheric modeling with the rice convection model, Space Sci. Rev., 107, 175 – 196, doi: 10.1023/A:1025532008047.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5 – 20, doi: 10.1016/0032-0633(89)90066-4.en_US
dc.identifier.citedreferenceWang, H., A. J. Ridley, H. Lühr, M. W. Liemohn, and S. Y. Ma ( 2008 ), Statistical study of the subauroral polarization stream: Its dependence on the cross‐polar cap potential and subauroral conductance, J. Geophys. Res., 113, A12311, doi: 10.1029/2008JA013529.en_US
dc.identifier.citedreferenceWang, H., S.‐Y. Ma, and A. J. Ridley ( 2009 ), Comparative study of subauroral polarization streams with dmsp observation and ram simulation, Chinese J. Geophys., 52 ( 3 ), 531 – 540, doi: 10.1002/cjg2.1374.en_US
dc.identifier.citedreferenceWygant, J., et al. ( 2013 ), The electric field and waves instruments on the radiation belt storm probes mission, Space Sci. Rev., 179 ( 1–4 ), 183 – 220, doi: 10.1007/s11214-013-0013-7.en_US
dc.identifier.citedreferenceYeh, H.‐C., J. C. Foster, F. J. Rich, and W. Swider ( 1991 ), Storm time electric field penetration observed at mid‐latitude, J. Geophys. Res., 96 ( A4 ), 5707 – 5721, doi: 10.1029/90JA02751.en_US
dc.identifier.citedreferenceYoung, D. T., H. Balsiger, and J. Geiss ( 1982 ), Correlations of magnetospheric ion composition with geomagnetic and solar activity, J. Geophys. Res., 87 ( A11 ), 9077 – 9096, doi: 10.1029/JA087iA11p09077.en_US
dc.identifier.citedreferenceZaharia, S., V. K. Jordanova, M. F. Thomsen, and G. D. Reeves ( 2006 ), Self‐consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm, J. Geophys. Res., 111, A11S14, doi: 10.1029/2006JA011619.en_US
dc.identifier.citedreferenceZaharia, S., V. K. Jordanova, D. Welling, and G. Tóth ( 2010 ), Self‐consistent inner magnetosphere simulation driven by a global MHD model, J. Geophys. Res., 115, A12228, doi: 10.1029/2010JA015915.en_US
dc.identifier.citedreferenceZheng, Y., P. C. Brandt, A. T. Y. Lui, and M.‐C. Fok ( 2008 ), On ionospheric trough conductance and subauroral polarization streams: Simulation results, J. Geophys. Res., 113, A04209, doi: 10.1029/2007JA012532.en_US
dc.identifier.citedreferenceZou, S., A. J. Ridley, M. B. Moldwin, M. J. Nicolls, A. J. Coster, E. G. Thomas, and J. M. Ruohoniemi ( 2013 ), Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes, J. Geophys. Res. Space Physics, 118, 7798 – 7809, doi: 10.1002/2013JA018860.en_US
dc.identifier.citedreferenceAnderson, P. C., R. A. Heelis, and W. B. Hanson ( 1991 ), The ionospheric signatures of rapid subauroral ion drifts, J. Geophys. Res., 96 ( A4 ), 5785 – 5792, doi: 10.1029/90JA02651.en_US
dc.identifier.citedreferenceAnderson, P. C., D. L. Carpenter, K. Tsuruda, T. Mukai, and F. J. Rich ( 2001 ), Multisatellite observations of rapid subauroral ion drifts (said), J. Geophys. Res., 106 ( A12 ), 29,585 – 29,599, doi: 10.1029/2001JA000128.en_US
dc.identifier.citedreferenceBaumjohann, W., G. Paschmann, and C. A. Cattell ( 1989 ), Average plasma properties in the central plasma sheet, J. Geophys. Res., 94 ( A6 ), 6597 – 6606, doi: 10.1029/JA094iA06p06597.en_US
dc.identifier.citedreferenceCao, J. B., W. Z. Ding, H. Reme, I. Dandouras, M. Dunlop, Z. X. Liu, and J. Y. Yang ( 2011 ), The statistical studies of the inner boundary of plasma sheet, Ann. Geophys., 29 ( 2 ), 289 – 298, doi: 10.5194/angeo‐29‐289‐2011.en_US
dc.identifier.citedreferenceClausen, L. B. N., et al. ( 2012 ), Large‐scale observations of a subauroral polarization stream by midlatitude SUPERDARN radars: Instantaneous longitudinal velocity variations, J. Geophys. Res., 117, A05306, doi: 10.1029/2011JA017232.en_US
dc.identifier.citedreferenceDe Zeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth ( 2004 ), Coupling of a global MHD code and an inner magnetospheric model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.en_US
dc.identifier.citedreferenceEbihara, Y., N. Nishitani, T. Kikuchi, T. Ogawa, K. Hosokawa, M.‐C. Fok, and M. F. Thomsen ( 2009 ), Dynamical property of storm time subauroral rapid flows as a manifestation of complex structures of the plasma pressure in the inner magnetosphere, J. Geophys. Res., 114, A01306, doi: 10.1029/2008JA013614.en_US
dc.identifier.citedreferenceFok, M.‐C., R. A. Wolf, R. W. Spiro, and T. E. Moore ( 2001 ), Comprehensive computational model of Earth's ring current, J. Geophys. Res., 106, 8417 – 8424, doi: 10.1029/2000JA000235.en_US
dc.identifier.citedreferenceFoster, J. C., and W. J. Burke ( 2002 ), SAPS: A new categorization for sub‐auroral electric fields, Eos Trans. AGU, 83 ( 36 ), 393 – 394, doi: 10.1029/2002EO000289.en_US
dc.identifier.citedreferenceFoster, J. C., and W. Rideout ( 2007 ), Storm enhanced density: Magnetic conjugacy effects, Ann. Geophys., 25 ( 8 ), 1791 – 1799, doi: 10.5194/angeo-25-1791-2007.en_US
dc.identifier.citedreferenceFoster, J. C., and H. B. Vo ( 2002 ), Average characteristics and activity dependence of the subauroral polarization stream, J. Geophys. Res., 107 ( A12 ), 1475, doi: 10.1029/2002JA009409.en_US
dc.identifier.citedreferenceFoster, J. C., P. J. Erickson, A. J. Coster, S. Thaller, J. Tao, J. R. Wygant, and J. W. Bonnell ( 2014 ), Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere, Geophys. Res. Lett., 41, 762 – 768, doi: 10.1002/2013GL059124.en_US
dc.identifier.citedreferenceGarner, T. W., R. A. Wolf, R. W. Spiro, W. J. Burke, B. G. Fejer, S. Sazykin, J. L. Roeder, and M. R. Hairston ( 2004 ), Magnetospheric electric fields and plasma sheet injection to low L‐shells during the 4–5 June 1991 magnetic storm: Comparison between the rice convection model and observations, J. Geophys. Res., 109, A02214, doi: 10.1029/2003JA010208.en_US
dc.identifier.citedreferenceGkioulidou, M., C.‐P. Wang, and L. R. Lyons ( 2011 ), Effect of self‐consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force‐balanced magnetic field solver, J. Geophys. Res., 116, A12213, doi: 10.1029/2011JA016810.en_US
dc.identifier.citedreferenceGoldstein, J., J. L. Burch, and B. R. Sandel ( 2005 ), Magnetospheric model of subauroral polarization stream, J. Geophys. Res., 110, A09222, doi: 10.1029/2005JA011135.en_US
dc.identifier.citedreferenceJordanova, V. K., Y. S. Miyoshi, S. Zaharia, M. F. Thomsen, G. D. Reeves, D. S. Evans, C. G. Mouikis, and J. F. Fennell ( 2006 ), Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events, J. Geophys. Res., 111, A11S10, doi: 10.1029/2006JA011644.en_US
dc.identifier.citedreferenceJordanova, V. K., S. Zaharia, and D. T. Welling ( 2010 ), Comparative study of ring current development using empirical, dipolar, and self‐consistent magnetic field simulations, J. Geophys. Res., 115, A00J11, doi: 10.1029/2010JA015671.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.