Show simple item record

Osteopontin mediates tumorigenic transformation of a preneoplastic murine cell line by suppressing anoikis: An Arg‐Gly‐Asp‐dependent‐focal adhesion kinase‐caspase‐8 axis

dc.contributor.authorHsieh, Yu‐huaen_US
dc.contributor.authorvan der Heyde, Henrien_US
dc.contributor.authorOh, Eok‐sooen_US
dc.contributor.authorGuan, Jun‐linen_US
dc.contributor.authorChang, Pi‐lingen_US
dc.date.accessioned2015-05-04T20:36:16Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05en_US
dc.identifier.citationHsieh, Yu‐hua ; van der Heyde, Henri; Oh, Eok‐soo ; Guan, Jun‐lin ; Chang, Pi‐ling (2015). "Osteopontin mediates tumorigenic transformation of a preneoplastic murine cell line by suppressing anoikis: An Argâ Glyâ Aspâ dependentâ focal adhesion kinaseâ caspaseâ 8 axis." Molecular Carcinogenesis 54(5): 379-392.en_US
dc.identifier.issn0899-1987en_US
dc.identifier.issn1098-2744en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111135
dc.description.abstractOsteopontin (OPN), an adhesive, matricellular glycoprotein, is a rate‐limiting factor in tumor promotion of skin carcinogenesis. With a tumor promotion model, the JB6 Cl41.5a cell line, we have shown that suppressing 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA)‐induced OPN expression markedly inhibits TPA‐induced colony formation in soft agar, an assay indicative of tumorigenic transformation. Further, the addition of exogenous OPN promotes colony formation of these cells. These findings support a function of OPN in mediating TPA‐induced neoplastic transformation of JB6 cells. In regard to the mechanism of action by OPN, we hypothesized that, for JB6 cells grown in soft‐agar, secreted OPN induced by TPA stimulates cell proliferation and/or prevents anoikis to facilitate TPA‐induced colony formation. Analyses of cell cycle and cyclin D1 expression, and direct cell counting of JB6 cells treated with OPN indicate that OPN does not stimulate cell proliferation relative to non‐treated controls. Instead, at 24 h, OPN decreases anoikis by 41%, as assessed by annexin V assays. Further, in suspended cells OPN suppresses caspase‐8 activation, which is mediated specifically through its RGD‐cell binding motif that transduces signals through integrin receptors. Transfection studies with wild‐type and mutant focal adhesion kinases (FAK) and Western blot analyses suggest that OPN suppression of caspase‐8 activation is mediated through phosphorylation of FAK at Tyr861. In summary, these studies indicate that induced OPN is a microenvironment modulator that facilitates tumorigenic transformation of JB6 cells by inhibiting anoikis through its RGD‐dependent suppression of caspase‐8 activity, which is mediated in part through the activation of FAK at Tyr861. © 2013 Wiley Periodicals, Inc.en_US
dc.publisherNova Science Publishers, Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherJB6 cellsen_US
dc.subject.otherapoptosis, phorbol ester, over‐agar assayen_US
dc.titleOsteopontin mediates tumorigenic transformation of a preneoplastic murine cell line by suppressing anoikis: An Arg‐Gly‐Asp‐dependent‐focal adhesion kinase‐caspase‐8 axisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111135/1/mc22108.pdf
dc.identifier.doi10.1002/mc.22108en_US
dc.identifier.sourceMolecular Carcinogenesisen_US
dc.identifier.citedreferenceLin EH, Hui AY, Meens JA, Tremblay EA, Schaefer E, Elliott BE. Disruption of Ca 2+ ‐dependent cell‐matrix adhesion enhances c‐Src kinase activity, but causes dissociation of the c‐Src/FAK complex and dephosphorylation of tyrosine‐577 of FAK in carcinoma cells. Exp Cell Res 2004; 293: 1 – 13.en_US
dc.identifier.citedreferenceLim Y, Han I, Jeon J, Park H, Bahk YY, Oh ES. Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem 2004; 279: 29060 – 29065.en_US
dc.identifier.citedreferenceSchlaepfer DD, Hunter T. Signal transduction from the extracellular matrix–a role for the focal adhesion protein‐tyrosine kinase FAK. Cell Struct Funct 1996; 21: 445 – 450.en_US
dc.identifier.citedreferenceChang PL, Prince CW. 1 alpha,25‐Dihydroxyvitamin D3 enhances 12‐O‐tetradecanoylphorbol‐13‐acetate‐induced tumorigenic transformation and osteopontin expression in mouse JB6 epidermal cells. Cancer Res 1993; 53: 2217 – 2220.en_US
dc.identifier.citedreferenceZouq NK, Keeble JA, Lindsay J, et al. FAK engages multiple pathways to maintain survival of fibroblasts and epithelia: Differential roles for paxillin and p130Cas. J Cell Sci 2009; 122: 357 – 367.en_US
dc.identifier.citedreferenceAbu‐Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I. Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti‐apoptosis in endothelial cells. Biochem J 2001; 360: 255 – 264.en_US
dc.identifier.citedreferenceLin YH, Yang‐Yen HF. The osteopontin‐CD44 survival signal involves activation of the phosphatidylinositol 3‐kinase/Akt signaling pathway. J Biol Chem 2001; 276: 46024 – 46030.en_US
dc.identifier.citedreferenceFrame MC, Patel H, Serrels B, Lietha D, Eck MJ. The FERM domain: Organizing the structure and function of FAK. Nat Rev Mol Cell Biol 2010; 11: 802 – 814.en_US
dc.identifier.citedreferenceFrisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701 – 706.en_US
dc.identifier.citedreferenceHayman EG, Pierschbacher MD, Suzuki S, Ruoslahti E. Vitronectin—A major cell attachment‐promoting protein in fetal bovine serum. Exp Cell Res 1985; 160: 245 – 258.en_US
dc.identifier.citedreferenceManohar A, Shome SG, Lamar J, et al. Alpha 3 beta 1 integrin promotes keratinocyte cell survival through activation of a MEK/ERK signaling pathway. J Cell Sci 2004; 117: 4043 – 4054.en_US
dc.identifier.citedreferenceYang HS, Jansen AP, Komar AA, et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 2003; 23: 26 – 37.en_US
dc.identifier.citedreferenceGolubovskaya VM, Nyberg C, Zheng M, et al. A small molecule inhibitor, 1,2,4,5‐benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth. J Med Chem 2008; 51: 7405 – 7416.en_US
dc.identifier.citedreferenceLunn JA, Jacamo R, Rozengurt E. Preferential phosphorylation of focal adhesion kinase tyrosine 861 is critical for mediating an anti‐apoptotic response to hyperosmotic stress. J Biol Chem 2007; 282: 10370 – 10379.en_US
dc.identifier.citedreferenceShi Q, Boettiger D. A novel mode for integrin‐mediated signaling: Tethering is required for phosphorylation of FAK Y397. Mol Biol Cell 2003; 14: 4306 – 4315.en_US
dc.identifier.citedreferenceHauck CR, Hunter T, Schlaepfer DD. The v‐Src SH3 domain facilitates a cell adhesion‐independent association with focal adhesion kinase. J Biol Chem 2001; 276: 17653 – 17662.en_US
dc.identifier.citedreferenceKurenova E, Xu LH, Yang X, et al. Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor‐interacting protein. Mol Cell Biol 2004; 24: 4361 – 4371.en_US
dc.identifier.citedreferenceTamagiku Y, Sonoda Y, Kunisawa M, et al. Down‐regulation of procaspase‐8 expression by focal adhesion kinase protects HL‐60 cells from TRAIL‐induced apoptosis. Biochem Biophys Res Commun 2004; 323: 445 – 452.en_US
dc.identifier.citedreferenceNunez G, Benedict MA, Hu Y, Inohara N. Caspases: The proteases of the apoptotic pathway. Oncogene 1998; 17: 3237 – 3245.en_US
dc.identifier.citedreferenceCourter D, Cao H, Kwok S, et al. The RGD domain of human osteopontin promotes tumor growth and metastasis through activation of survival pathways. PLoS ONE 2010; 5: e9633.en_US
dc.identifier.citedreferenceSchaller MD. Cellular functions of FAK kinases: Insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123: 1007 – 1013.en_US
dc.identifier.citedreferenceCalalb MB, Zhang X, Polte TR, Hanks SK. Focal adhesion kinase tyrosine‐861 is a major site of phosphorylation by Src. Biochem Biophys Res Commun 1996; 228: 662 – 668.en_US
dc.identifier.citedreferencePolte TR, Hanks SK. Complexes of focal adhesion kinase (FAK) and Crk‐associated substrate (p130(Cas)) are elevated in cytoskeleton‐associated fractions following adhesion and Src transformation. Requirements for Src kinase activity and FAK proline‐rich motifs. J Biol Chem 1997; 272: 5501 – 5509.en_US
dc.identifier.citedreferenceBrunton VG, Avizienyte E, Fincham VJ, et al. Identification of Src‐specific phosphorylation site on focal adhesion kinase: Dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 2005; 65: 1335 – 1342.en_US
dc.identifier.citedreferenceHsieh YH, Juliana MM, Hicks PH, et al. Papilloma development is delayed in osteopontin‐null mice: Implicating an antiapoptosis role for osteopontin. Cancer Res 2006; 66: 7119 – 7127.en_US
dc.identifier.citedreferenceDenhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001; 107: 1055 – 1061.en_US
dc.identifier.citedreferenceScatena M, Liaw L, Giachelli CM. Osteopontin: A multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vas Biol 2007; 27: 2302 – 2309.en_US
dc.identifier.citedreferenceMcKee MD, Pedraza CE, Kaartinen MT. Osteopontin and wound healing in bone. Cells Tissues Organs 2011; 194: 313 – 319.en_US
dc.identifier.citedreferenceWai PY, Kuo PC. Osteopontin: Regulation in tumor metastasis. Cancer Met Rev 2008; 27: 103 – 118.en_US
dc.identifier.citedreferenceRittling SR, Chambers AF. Role of osteopontin in tumour progression. Br J Cancer 2004; 90: 1877 – 1881.en_US
dc.identifier.citedreferenceChang PL, Hsieh YH. The role of matricellular protein osteopontin in tumorigenesis. Precancerous Conditions Research Trends Hauppauge. NY: Nova Science Publishers, Inc; 2007. pp. 5 – 34.en_US
dc.identifier.citedreferenceColburn NH, Bruegge WF, Bates JR, et al. Correlation of anchorage‐independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res 1978; 38: 624 – 634.en_US
dc.identifier.citedreferenceShin SI, Freedman VH, Risser R, Pollack R. Tumorigenicity of virus‐transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 1975; 72: 4435 – 4439.en_US
dc.identifier.citedreferenceDong Z, Birrer MJ, Watts RG, Matrisian LM, Colburn NH. Blocking of tumor promoter‐induced AP‐1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc Natl Acad Sci USA 1994; 91: 609 – 613.en_US
dc.identifier.citedreferenceJansen AP, Colburn NH, Verma AK. Tumor promoter‐induced ornithine decarboxylase gene expression occurs independently of AP‐1 activation. Oncogene 1999; 18: 5806 – 5813.en_US
dc.identifier.citedreferenceYoung MR, Li JJ, Rincon M, et al. Transgenic mice demonstrate AP‐1 (activator protein‐1) transactivation is required for tumor promotion. Proc Natl Acad Sci USA 1999; 96: 9827 – 9832.en_US
dc.identifier.citedreferenceO'Brien TG, Megosh LC, Gilliard G, Soler AP. Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 1997; 57: 2630 – 2637.en_US
dc.identifier.citedreferenceHalmekyto M, Syrjanen K, Janne J, Alhonen L. Enhanced papilloma formation in response to skin tumor promotion in transgenic mice overexpressing the human ornithine decarboxylase gene. Biochem Biophys Res Commun 1992; 187: 493 – 497.en_US
dc.identifier.citedreferenceSchmid T, Jansen AP, Baker AR, Hegamyer G, Hagan JP, Colburn NH. Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res 2008; 68: 1254 – 1260.en_US
dc.identifier.citedreferenceChang PL, Cao M, Hicks P. Osteopontin induction is required for tumor promoter‐induced transformation of preneoplastic mouse cells. Carcinogenesis 2003; 24: 1749 – 1758.en_US
dc.identifier.citedreferenceSmith JH, Denhardt DT. Molecular cloning of a tumor promoter‐inducible mRNA found in JB6 mouse epidermal cells: Induction is stable at high, but not at low, cell densities. J Cell Biochem 1987; 34: 13 – 22.en_US
dc.identifier.citedreferenceChang PL, Tucker MA, Hicks PH, Prince CW. Novel protein kinase C isoforms and mitogen‐activated kinase kinase mediate phorbol ester‐induced osteopontin expression. Int J Biochem Cell Biol 2002; 34: 1142 – 1151.en_US
dc.identifier.citedreferenceChang PL. Prince CW. 1 alpha,25‐dihydroxyvitamin D3 stimulates synthesis and secretion of nonphosphorylated osteopontin (secreted phosphoprotein 1) in mouse JB6 epidermal cells. Cancer Res 1991; 51: 2144 – 2150.en_US
dc.identifier.citedreferenceDion LD, Gindhart TD, Colburn NH. Four‐day duration of tumor promoter exposure required to transform JB6 promotion‐sensitive cells to anchorage independence. Cancer Res 1988; 48: 7126 – 7131.en_US
dc.identifier.citedreferenceChang PL, Chambers AF. Transforming JB6 cells exhibit enhanced Integrin‐mediated adhesion to osteopontin. J Cell Biochem 2000; 78: 8 – 23.en_US
dc.identifier.citedreferenceDong Z, Cmarik JL, Wendel EJ, Colburn NH. Differential transformation efficiency but not AP‐1 induction under anchorage‐dependent and ‐independent conditions. Carcinogenesis 1994; 15: 1001 – 1004.en_US
dc.identifier.citedreferenceColburn NH. Tumor promoter produces anchorage independence in mouse epidermal cells by an induction mechanism. Carcinogenesis 1980; 1: 951 – 954.en_US
dc.identifier.citedreferenceMcGarrity GJ, Steiner T, Vanaman V. Detection of mycoplasma infection of cell cultures by DNA fluorochrome staining. In: Tully JG, Razin E, editors. Methods in mycoplasmology. Vol II. New York: Academic Press; 1983. pp. 155 – 208.en_US
dc.identifier.citedreferenceLasa M, Chang PL, Prince CW, Pinna LA. Phosphorylation of osteopontin by Golgi apparatus casein kinase. Biochem Biophys Res Commun 1997; 240: 602 – 605.en_US
dc.identifier.citedreferenceDarzynkiewicz ZaJ G. Current protocols in cytometry. NY: J. Wiley & Sons; 1997. pp. 7.5.1 – 7.5.24en_US
dc.identifier.citedreferenceCooper LA, Shen TL, Guan JL. Regulation of focal adhesion kinase by its amino‐terminal domain through an autoinhibitory interaction. Mol Cell Biol 2003; 23: 8030 – 8041.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.