Show simple item record

Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL‐10

dc.contributor.authorTao, Huiminen_US
dc.contributor.authorLu, Linen_US
dc.contributor.authorXia, Yangen_US
dc.contributor.authorDai, Fuen_US
dc.contributor.authorWang, Yien_US
dc.contributor.authorBao, Yangyien_US
dc.contributor.authorLundy, Steven K.en_US
dc.contributor.authorIto, Fumitoen_US
dc.contributor.authorPan, Qinen_US
dc.contributor.authorZhang, Xiaolianen_US
dc.contributor.authorZheng, Fangen_US
dc.contributor.authorShu, Guoshunen_US
dc.contributor.authorFang, Bingmuen_US
dc.contributor.authorJiang, Jinhongen_US
dc.contributor.authorXia, Jianchuangen_US
dc.contributor.authorHuang, Shiangen_US
dc.contributor.authorLi, Qiaoen_US
dc.contributor.authorChang, Alfred E.en_US
dc.date.accessioned2015-05-04T20:36:20Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationTao, Huimin; Lu, Lin; Xia, Yang; Dai, Fu; Wang, Yi; Bao, Yangyi; Lundy, Steven K.; Ito, Fumito; Pan, Qin; Zhang, Xiaolian; Zheng, Fang; Shu, Guoshun; Fang, Bingmu; Jiang, Jinhong; Xia, Jianchuang; Huang, Shiang; Li, Qiao; Chang, Alfred E. (2015). "Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL‐10." European Journal of Immunology 45(4): 999-1009.en_US
dc.identifier.issn0014-2980en_US
dc.identifier.issn1521-4141en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111143
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherTumoren_US
dc.subject.otherCytotoxicityen_US
dc.subject.otherFasen_US
dc.subject.otherB cellsen_US
dc.subject.otherAdoptive Immunotherapyen_US
dc.subject.otherIL‐10en_US
dc.titleAntitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL‐10en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111143/1/eji3242.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111143/2/eji3242-sup-0001-PRC.pdf
dc.identifier.doi10.1002/eji.201444625en_US
dc.identifier.sourceEuropean Journal of Immunologyen_US
dc.identifier.citedreferenceKoni, P. A., Bolduc, A., Takezaki, M., Ametani, Y., Huang, L., Lee, J. R., Nutt, S. L. et al., Constitutively CD40‐activated B cells regulate CD8 T cell inflammatory response by IL‐10 induction. J. Immunol. 2013. 190: 3189 – 3196.en_US
dc.identifier.citedreferenceHahne, M., Renno, T., Schroeter, M., Irmler, M., French, L., Bornard, T., MacDonald, H. R. and Tschopp, J., Activated B cells express functional Fas ligand. Eur. J. Immunol. 1996. 26: 721 – 724.en_US
dc.identifier.citedreferenceWard, B. A., Shu, S., Chou, T., Perry‐Lalley, D. and Chang, A. E., Cellular basis of immunologic interactions in adoptive T cell therapy of established metastases from a syngeneic murine sarcoma. J. Immunol. 1988. 141: 1047 – 1053.en_US
dc.identifier.citedreferenceChang, A. E., Perry‐Lalley, D. M. and Shu, S., Distinct immunologic specificity of tumor regression mediated by effector cells isolated from immunized and tumor‐bearing mice. Cell Immunol. 1989. 120: 419 – 429.en_US
dc.identifier.citedreferenceGeiger, J. D., Wagner, P. D., Cameron, M. J., Shu, S. and Chang, A. E., Generation of T cells reactive to the poorly immunogenic B16‐BL6 melanoma with efficacy in the treatment of spontaneous metastases. J. Immunother. Emphasis Tumor Immunol. 1993. 13: 153 – 165.en_US
dc.identifier.citedreferenceLi, Q., Grover, A. C., Donald, E. J., Carr, A., Yu, J., Whitfield, J., Nelson, M. et al., Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor‐primed lymph node cells. J. Immunol. 2005. 175: 1424 – 1432.en_US
dc.identifier.citedreferenceIuchi, T., Teitz‐Tennenbaum, S., Huang, J., Redman, B. G., Hughes, S. D., Li, M., Jiang, G. et al., Interleukin‐21 augments the efficacy of T‐cell therapy by eliciting concurrent cellular and humoral responses. Cancer Res. 2008. 68: 4431 – 4441.en_US
dc.identifier.citedreferenceLi, Q., Teitz‐Tennenbaum, S., Donald, E. J., Li, M. and Chang, A. E., In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J. Immunol. 2009. 183: 3195 – 3203.en_US
dc.identifier.citedreferenceLi, Q., Lao, X., Pan, Q., Ning, N., Yet, J., Xu, Y., Li, S. and Chang, A. E., Adoptive transfer of tumor reactive B cells confers host T‐cell immunity and tumor regression. Clin. Cancer Res. 2011. 17: 4987 – 4995.en_US
dc.identifier.citedreferenceMauri, C. and Ehrenstein, M. R., The 'short' history of regulatory B cells. Trends Immunol 2008. 29: 34 – 40.en_US
dc.identifier.citedreferenceLapointe, R., Bellemare‐Pelletier, A., Housseau, F., Thibodeau, J. and Hwu, P., CD40‐stimulated B lymphocytes pulsed with tumor antigens are effective antigen‐presenting cells that can generate specific T cells. Cancer Res. 2003. 63: 2836 – 2843.en_US
dc.identifier.citedreferenceLundy, S. K., Killer B lymphocytes: the evidence and the potential. Inflamm. Res. 2009. 58: 345 – 357.en_US
dc.identifier.citedreferencePerricone, M. A., Smith, K. A., Claussen, K. A., Plog, M. S., Hempel, D. M., Roberts, B. L., St George, J. A. and Kaplan, J. M., Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J. Immunother. 2004. 27: 273 – 281.en_US
dc.identifier.citedreferenceQin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X. and Blankenstein, T., B cells inhibit induction of T cell‐dependent tumor immunity. Nat. Med. 1998. 4: 627 – 630.en_US
dc.identifier.citedreferenceShah, S., Divekar, A. A., Hilchey, S. P., Cho, H. M., Newman, C. L., Shin, S. U., Nechustan, H. et al., Increased rejection of primary tumors in mice lacking B cells: inhibition of anti‐tumor CTL and TH1 cytokine responses by B cells. Int. J. Cancer 2005. 117: 574 – 586.en_US
dc.identifier.citedreferenceEvans, D. E., Munks, M. W., Purkerson, J. M. and Parker, D. C., Resting B lymphocytes as APC for naive T lymphocytes: dependence on CD40 ligand/CD40. J. Immunol. 2000. 164: 688 – 697.en_US
dc.identifier.citedreferenceMizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. and Bhan, A. K., Chronic intestinal inflammatory condition generates IL‐10‐producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002. 16: 219 – 230.en_US
dc.identifier.citedreferenceFillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. and Anderton, S. M., B cells regulate autoimmunity by provision of IL‐10. Nat. Immunol. 2002. 3: 944 – 950.en_US
dc.identifier.citedreferenceMauri, C., Gray, D., Mushtaq, N. and Londei, M., Prevention of arthritis by interleukin 10‐producing B cells. J. Exp. Med. 2003. 197: 489 – 501.en_US
dc.identifier.citedreferenceInoue, S., Leitner, W. W., Golding, B. and Scott, D., Inhibitory effects of B cells on antitumor immunity. Cancer Res. 2006. 66: 7741 – 7747.en_US
dc.identifier.citedreferenceSchioppa, T., Moore, R., Thompson, R. G., Rosser, E. C., Kulbe, H., Nedospasov, S., Mauri, C. et al., B regulatory cells and the tumor‐promoting actions of TNF‐alpha during squamous carcinogenesis. Proc. Natl. Acad. Sci. USA 2011. 108: 10662 – 10667.en_US
dc.identifier.citedreferenceYanaba, K., Bouaziz, J. D., Matsushita, T., Tsubata, T. and Tedder, T. F., The development and function of regulatory B cells expressing IL‐10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 2009. 182: 7459 – 7472.en_US
dc.identifier.citedreferenceDiLillo, D. J., Matsushita, T. and Tedder, T. F., B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann. NY Acad. Sci. 2010. 1183: 38 – 57.en_US
dc.identifier.citedreferenceEvans, J. G., Chavez‐Rueda, K. A., Eddaoudi, A., Meyer‐Bahlburg, A., Rawlings, D. J., Ehrenstein, M. R. and Mauri, C., Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 2007. 178: 7868 – 7878.en_US
dc.identifier.citedreferenceYanaba, K., Bouaziz, J. D., Haas, K. M., Poe, J. C., Fujimoto, M. and Tedder, T. F., A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell‐dependent inflammatory responses. Immunity 2008. 28: 639 – 650.en_US
dc.identifier.citedreferenceMatsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M. and Tedder, T. F., Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 2008. 118: 3420 – 3430.en_US
dc.identifier.citedreferenceKlinker, M. W. and Lundy, S. K., Multiple mechanisms of immune suppression by B lymphocytes. Mol. Med. 2012. 18: 123 – 137.en_US
dc.identifier.citedreferenceStrater, J., Mariani, S. M., Walczak, H., Rucker, F. G., Leithauser, F., Krammer, P. H. and Moller, P., CD95 ligand (CD95L) in normal human lymphoid tissues: a subset of plasma cells are prominent producers of CD95L. Am. J. Pathol. 1999. 154: 193 – 201.en_US
dc.identifier.citedreferenceBlair, P. A., Chavez‐Rueda, K. A., Evans, J. G., Shlomchik, M. J., Eddaoudi, A., Isenberg, D. A., Ehrenstein, M. R. and Mauri, C., Selective targeting of B cells with agonistic anti‐CD40 is an efficacious strategy for the generation of induced regulatory T2‐like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol. 2009. 182: 3492 – 3502.en_US
dc.identifier.citedreferenceMaseda, D., Candando, K. M., Smith, S. H., Kalampokis, I., Weaver, C. T., Plevy, S. E., Poe, J. C. and Tedder, T. F., Peritoneal cavity regulatory B cells (B10 cells) modulate IFN‐gamma+CD4+ T cell numbers during colitis development in mice. J. Immunol. 2013. 191: 2780 – 2795.en_US
dc.identifier.citedreferenceAruga, A., Aruga, E., Tanigawa, K., Bishop, D. K., Sondak, V. K. and Chang, A. E., Type 1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in vivo antitumor reactivity: IL‐10 mediates a suppressive role. J. Immunol. 1997. 159: 664 – 673.en_US
dc.identifier.citedreferenceNilsson, N., Ingvarsson, S. and Borrebaeck, C. A., Immature B cells in bone marrow express Fas/FasL. Scand. J. Immunol. 2000. 51: 279 – 284.en_US
dc.identifier.citedreferenceTian, J., Zekzer, D., Hanssen, L., Lu, Y., Olcott, A. and Kaufman, D. L., Lipopolysaccharide‐activated B cells down‐regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 2001. 167: 1081 – 1089.en_US
dc.identifier.citedreferenceKlinker, M. W., Reed, T. J., Fox, D. A. and Lundy, S. K., Interleukin‐5 supports the expansion of fas ligand‐expressing killer B cells that induce antigen‐specific apoptosis of CD4(+) T cells and secrete interleukin‐10. PLoS One 2013. 8: e70131.en_US
dc.identifier.citedreferenceHarada, M., Okamoto, T., Kurosawa, S., Shinomiya, Y., Ito, O., Takenoyama, M., Terao, H. et al., The antitumor activity induced by the in vivo administration of activated B cells bound to anti‐CD3 monoclonal antibody. Cell Immunol. 1995. 161: 132 – 137.en_US
dc.identifier.citedreferenceMessina, J. L., Fenstermacher, D. A., Eschrich, S., Qu, X., Berglund, A. E., Lloyd, M. C., Schell, M. J. et al., 12‐Chemokine gene signature identifies lymph node‐like structures in melanoma: potential for patient selection for immunotherapy? Sci. Rep. 2012. 2: 765.en_US
dc.identifier.citedreferenceBrennen, W. N., Drake, C. G. and Isaacs, J. T., Enhancement of the T‐cell armamentarium as a cell‐based therapy for prostate cancer. Cancer Res. 2014. 74: 3390 – 3395.en_US
dc.identifier.citedreferenceSkitzki, J., Craig, R. A., Okuyama, R., Knibbs, R. N., McDonagh, K., Chang, A. E. and Stoolman, L. M., Donor cell cycling, trafficking, and accumulation during adoptive immunotherapy for murine lung metastases. Cancer Res. 2004. 64: 2183 – 2191.en_US
dc.identifier.citedreferenceMellman, I., Coukos, G. and Dranoff, G., Cancer immunotherapy comes of age. Nature 2011. 480: 480 – 489.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.