Show simple item record

Long‐lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity

dc.contributor.authorDrake, Joshua C.en_US
dc.contributor.authorBruns, Danielle R.en_US
dc.contributor.authorPeelor, Frederick F.en_US
dc.contributor.authorBiela, Laurie M.en_US
dc.contributor.authorMiller, Richard A.en_US
dc.contributor.authorMiller, Benjamin F.en_US
dc.contributor.authorHamilton, Karyn L.en_US
dc.date.accessioned2015-05-04T20:36:20Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-06en_US
dc.identifier.citationDrake, Joshua C.; Bruns, Danielle R.; Peelor, Frederick F.; Biela, Laurie M.; Miller, Richard A.; Miller, Benjamin F.; Hamilton, Karyn L. (2015). "Long‐lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activity." Aging Cell 14(3): 474-482.en_US
dc.identifier.issn1474-9718en_US
dc.identifier.issn1474-9726en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111144
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDNA synthesisen_US
dc.subject.otherprotein synthesisen_US
dc.subject.otherproteostasisen_US
dc.subject.otherstable isotopeen_US
dc.subject.otherlong‐lived modelen_US
dc.titleLong‐lived Snell dwarf mice display increased proteostatic mechanisms that are not dependent on decreased mTORC1 activityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111144/1/acel12329.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111144/2/acel12329-sup-0001-SuppInfo.pdf
dc.identifier.doi10.1111/acel.12329en_US
dc.identifier.sourceAging Cellen_US
dc.identifier.citedreferenceRobinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF ( 2011 ) Long‐term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB J. 25, 3240 – 3249.en_US
dc.identifier.citedreferenceHsieh CC, Papaconstantinou J ( 2004 ) Akt/PKB and p38 MAPK signaling, translational initiation and longevity in Snell dwarf mouse livers. Mech. Ageing Dev. 125, 785 – 798.en_US
dc.identifier.citedreferenceHsieh CC, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J ( 2002 ) Effects of the Pit1 mutation on the insulin signaling pathway: implications on the longevity of the long‐lived Snell dwarf mouse. Mech. Ageing Dev. 123, 1245 – 1255.en_US
dc.identifier.citedreferenceLaplante M, Sabatini DM ( 2012 ) mTOR signaling in growth control and disease. Cell 149, 274 – 293.en_US
dc.identifier.citedreferenceMary J, Vougier S, Picot CR, Perichon M, Petropoulos I, Friguet B ( 2004 ) Enzymatic reactions involved in the repair of oxidized proteins. Exp. Gerontol. 39, 1117 – 1123.en_US
dc.identifier.citedreferenceMiller BF, Hamilton KL ( 2012 ) A perspective on the determination of mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 302, E496 – E499.en_US
dc.identifier.citedreferenceMiller BF, Robinson MM, Reuland DJ, Drake JC, Peelor FF 3rd, Bruss MD, Hellerstein MK, Hamilton KL ( 2012a ) Calorie restriction does not increase short‐term or long‐term protein synthesis. J. Gerontol. A Biol. Sci. Med. Sci. 68, 530 – 538.en_US
dc.identifier.citedreferenceMiller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL ( 2012b ) A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell 11, 150 – 161.en_US
dc.identifier.citedreferenceMiller BF, Drake JC, Naylor B, Price JC, Hamilton KL ( 2014 ) The measurement of protein synthesis for assessing proteostasis in studies of slowed aging. Ageing Res. Rev. 18C, 106 – 111.en_US
dc.identifier.citedreferenceMortimore GE, Poso AR ( 1987 ) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu. Rev. Nutr. 7, 539 – 564.en_US
dc.identifier.citedreferenceNeese RA, Misell LM, Turner S, Chu A, Kim J, Cesar D, Hoh R, Antelo F, Strawford A, McCune JM, Christiansen M, Hellerstein MK ( 2002 ) Measurement in vivo of proliferation rates of slow turnover cells by 2H 2 O labeling of the deoxyribose moiety of DNA. Proc. Natl. Acad. Sci. USA 99, 15345 – 15350.en_US
dc.identifier.citedreferenceOrgel LE ( 1963 ) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl. Acad. Sci. USA 49, 517 – 521.en_US
dc.identifier.citedreferencePoppek D, Grune T ( 2006 ) Proteasomal defense of oxidative protein modifications. Antioxid. Redox Signal. 8, 173 – 184.en_US
dc.identifier.citedreferenceRobinson MM, Richards JC, Hickey MS, Moore DR, Phillips SM, Bell C, Miller BF ( 2010 ) Acute {beta}‐adrenergic stimulation does not alter mitochondrial protein synthesis or markers of mitochondrial biogenesis in adult men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R25 – R33.en_US
dc.identifier.citedreferenceRooyackers OE, Adey DB, Ades PA, Nair KS ( 1996 ) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc. Natl. Acad. Sci. USA 93, 15364 – 15369.en_US
dc.identifier.citedreferenceSelman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al‐Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ ( 2009 ) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140 – 144.en_US
dc.identifier.citedreferenceSharp ZD, Bartke A ( 2005 ) Evidence for down‐regulation of phosphoinositide 3‐kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)‐dependent translation regulatory signaling pathways in Ames dwarf mice. J. Gerontol. A Biol. Sci. Med. Sci. 60, 293 – 300.en_US
dc.identifier.citedreferenceStadtman ER ( 1988 ) Protein modification in aging. J. Gerontol. 43, B112 – B120.en_US
dc.identifier.citedreferenceStadtman ER ( 1992 ) Protein oxidation and aging. Science 257, 1220 – 1224.en_US
dc.identifier.citedreferenceTreaster SB, Ridgway ID, Richardson CA, Gaspar MB, Chaudhuri AR, Austad SN ( 2013 ) Superior proteome stability in the longest lived animal. Age (Dordr) 36, 1009 – 1017.en_US
dc.identifier.citedreferenceTurturro A, Witt WW, Lewis S, Hass BS, Lipman RD, Hart RW ( 1999 ) Growth curves and survival characteristics of the animals used in the biomarkers of aging program. J. Gerontol. A Biol. Sci. Med. Sci. 54, B492 – B501.en_US
dc.identifier.citedreferenceVergara M, Smith‐Wheelock M, Harper JM, Sigler R, Miller RA ( 2004 ) Hormone‐treated snell dwarf mice regain fertility but remain long lived and disease resistant. J. Gerontol. A Biol. Sci. Med. Sci. 59, 1244 – 1250.en_US
dc.identifier.citedreferenceVitvitsky V, Martinov M, Ataullakhanov F, Miller RA, Banerjee R ( 2013 ) Sulfur‐based redox alterations in long‐lived Snell dwarf mice. Mech. Ageing Dev. 134, 321 – 330.en_US
dc.identifier.citedreferenceWang M, Miller RA ( 2012 ) Augmented autophagy pathways and MTOR modulation in fibroblasts from long‐lived mutant mice. Autophagy 8, 1273 – 1274.en_US
dc.identifier.citedreferenceBrown‐Borg HM, Borg KE, Meliska CJ, Bartke A ( 1996 ) Dwarf mice and the ageing process. Nature 384, 33.en_US
dc.identifier.citedreferenceBusch R, Kim YK, Neese RA, Schade‐Serin V, Collins M, Awada M, Gardner JL, Beysen C, Marino ME, Misell LM, Hellerstein MK ( 2006 ) Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta 1760, 730 – 744.en_US
dc.identifier.citedreferenceConn CS, Qian SB ( 2013 ) Nutrient signaling in protein homeostasis: an increase in quantity at the expense of quality. Sci. Signal. 6, ra24.en_US
dc.identifier.citedreferenceDrake JC, Peelor FF 3rd, Biela LM, Watkins MK, Miller RA, Hamilton KL, Miller BF ( 2013 ) Assessment of mitochondrial biogenesis and mTORC1 signaling during chronic rapamycin feeding in male and female mice. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1493 – 1501.en_US
dc.identifier.citedreferenceDrake JC, Bruns DR, Peelor FF 3rd, Biela LM, Miller RA, Hamilton KL, Miller BF ( 2014 ) Long‐lived crowded litter mice have an age‐dependent increase in protein synthesis to DNA synthesis ratio and mTORC1‐substrate phosphorylation. Am. J. Physiol. Endocrinol. Metab. 307, E813 – E821.en_US
dc.identifier.citedreferenceEden E, Geva‐Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U ( 2011 ) Proteome half‐life dynamics in living human cells. Science 331, 764 – 768.en_US
dc.identifier.citedreferenceFlurkey K, Papaconstantinou J, Miller RA, Harrison DE ( 2001 ) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl. Acad. Sci. USA 98, 6736 – 6741.en_US
dc.identifier.citedreferenceFlurkey K, Papaconstantinou J, Harrison DE ( 2002 ) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech. Ageing Dev. 123, 121 – 130.en_US
dc.identifier.citedreferenceGesing A, Masternak MM, Lewinski A, Karbownik‐Lewinska M, Kopchick JJ, Bartke A ( 2013 ) Decreased levels of proapoptotic factors and increased key regulators of mitochondrial biogenesis constitute new potential beneficial features of long‐lived growth hormone receptor gene‐disrupted mice. J. Gerontol. A Biol. Sci. Med. Sci. 68, 639 – 651.en_US
dc.identifier.citedreferenceHarrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA ( 2009 ) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392 – 395.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.