Show simple item record

Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes

dc.contributor.authorWhitehead, J. P.en_US
dc.contributor.authorJablonowski, C.en_US
dc.contributor.authorKent, J.en_US
dc.contributor.authorRood, R. B.en_US
dc.date.accessioned2015-05-04T20:36:23Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationWhitehead, J. P.; Jablonowski, C.; Kent, J.; Rood, R. B. (2015). "Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes." Quarterly Journal of the Royal Meteorological Society 141(688): 739-751.en_US
dc.identifier.issn0035-9009en_US
dc.identifier.issn1477-870Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111151
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherbaroclinic waveen_US
dc.subject.otherdynamical coreen_US
dc.subject.othertracer transporten_US
dc.subject.otherpotential vorticityen_US
dc.subject.otheradvectionen_US
dc.titlePotential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111151/1/qj2389.pdf
dc.identifier.doi10.1002/qj.2389en_US
dc.identifier.sourceQuarterly Journal of the Royal Meteorological Societyen_US
dc.identifier.citedreferenceSimmons AJ, Burridge DM. 1981. An energy and angular‐momentum conserving vertical finite‐difference scheme and hybrid vertical coordinate. Mon. Weather Rev. 109: 758 – 766.en_US
dc.identifier.citedreferenceRood RB. 2011. A perspective on the role of the dynamical core in the development of weather and climate models. In Numerical Techniques for Global Atmospheric Models, Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. (eds.) Lecture Notes in Science and Engineering 80: 523 – 544. Springer: Berlin.en_US
dc.identifier.citedreferenceRood RB, Douglass AR, Cerniglia MC, Read WG. 1997. Synoptic‐scale mass exchange from the troposphere to the stratosphere. J. Geophys. Res. 102: 23467 – 23485, doi: 10.1029/97JD01598.en_US
dc.identifier.citedreferenceRood RB, Douglass AR, Cerniglia MC, Sparling LC, Nielsen JE. 2000. Seasonal variability of middle‐latitude ozone in the lowermost stratosphere derived from probability distribution functions. J. Geophys. Res. 105: 17793 – 17805, doi: 10.1029/2000JD900142.en_US
dc.identifier.citedreferenceSalmon R. 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press: Oxford, UK.en_US
dc.identifier.citedreferenceSchneider T, Held IM, Garner ST. 2002. Boundary effects in potential vorticity dynamics. J. Atmos. Sci. 60: 1024 – 1040.en_US
dc.identifier.citedreferenceStoelinga MT. 1996. A potential vorticity‐based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Weather Rev. 124: 849 – 874.en_US
dc.identifier.citedreferenceTaylor MA. 2011. Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. In Numerical Techniques for Global Atmospheric Models, Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. (eds.) Lecture Notes in Science and Engineering 80: 357 – 380. Springer: Berlin.en_US
dc.identifier.citedreferenceTaylor MA, Fournier A. 2010. A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys. 229: 5879 – 5895.en_US
dc.identifier.citedreferenceTaylor MA, Tribbia J, Iskandarani M. 1997. The spectral element method for the shallow‐water equations on the sphere. J. Comput. Phys. 130: 92 – 108.en_US
dc.identifier.citedreferenceTaylor MA, St‐Cyr A, Fournier A. 2009. A non‐oscillatory advection operator for the compatible spectral element method. In Computational Science D ICCS 2009, Part II, Allen G. (ed.) Lecture Notes in Computer Science 5545: 273 – 282. Springer: Berlin.en_US
dc.identifier.citedreferencevan Leer B. 1974. Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14: 361 – 370.en_US
dc.identifier.citedreferencevan Leer B. 1977. Towards the ultimate conservative difference scheme, III. Upstream centered finite‐difference schemes for ideal compressible flow. J. Comput. Phys. 23: 263 – 275.en_US
dc.identifier.citedreferenceWan H, Wang B, Yu YQ, Yu RC. 2006. ‘ Development and validation of the grid point atmospheric model of IAP LASG (GAMIL) ’, Technical report 16. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences: Beijing.en_US
dc.identifier.citedreferenceWang B, Wan H, Li ZZ, Zhang X, Yu RC, Yu YQ, Liu HT. 2004. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci. China A 47 ( Suppl. ): 4 – 21.en_US
dc.identifier.citedreferenceWhitehead JP, Jablonowski C, Rood RB, Lauritzen PH. 2011. A stability analysis of divergence damping on a latitude–longitude grid. Mon. Weather Rev. 139: 2976 – 2993.en_US
dc.identifier.citedreferenceWilliamson DL. 2007. The evolution of dynamical cores for global atmospheric models J. Meteorol. Soc. Jpn. 85B: 241 – 269.en_US
dc.identifier.citedreferenceWilliamson DL. 2008. Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua‐planet simulations. Tellus A 60: 839 – 847.en_US
dc.identifier.citedreferenceWoolings T. 2004. ‘ Entropy and potential vorticity in dynamical core atmosphere models ’, PhD thesis. University of Reading: Reading, UK.en_US
dc.identifier.citedreferenceZapotocny TH, Lenzen AJ, Johnson DR, Reames FM, Politowicz PA, Schaak TK. 1996. Joint distributions of potential vorticity and inert trace constituent in CCM2 and UW θ ‐ σ model simulations. Geophys. Res. Lett. 23: 2525 – 2528, doi: 10.1029/96GL02298.en_US
dc.identifier.citedreferenceZhang K, Wan H, Wang B, Zhang M. 2008. Consistency problem with tracer advection in the atmospheric model GAMIL. Adv. Atmos. Sci. 25 306 – 318.en_US
dc.identifier.citedreferenceZiv B, Alpert P. 1994. Isobaric to isentropic interpolation errors and implication to potential vorticity analysis. J. Appl. Meteorol. 33: 694 – 703.en_US
dc.identifier.citedreferenceBabiano A, Provenzale A. 2007. Coherent vortices and tracer cascades in two‐dimensional turbulence. J. Fluid Mech. 574: 429 – 448.en_US
dc.identifier.citedreferenceBrennan MJ, Lackmann GM, Mahoney KM. 2007. Potential vorticity (PV) thinking in operations: The utility of non‐conservation. Weather and Forecasting 23: 168 – 182.en_US
dc.identifier.citedreferenceChagnon JM, Gray SL. 2009. Horizontal potential vorticity dipoles on the convective storm scale. Q. J. R. Meteorol. Soc. 135: 1392 – 1408.en_US
dc.identifier.citedreferenceChagnon JM, Gray SL, Methven J. 2013. Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Q. J. R. Meteorol. Soc. 139: 1270 – 1282.en_US
dc.identifier.citedreferenceCharney JG, Stern ME. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19: 159 – 172.en_US
dc.identifier.citedreferenceColella P, Woodward PR. 1984. The Piecewise Parabolic Method (PPM) for gas‐dynamical simulations. J. Comput. Phys. 54: 174 – 201.en_US
dc.identifier.citedreferenceDavis CA, Stoelinga MT, Kuo YH. 1993. The integrated effect of condensation in numerical simulations of extra‐tropical cyclogenesis. Mon. Weather Rev. 121: 2309 – 2330.en_US
dc.identifier.citedreferenceDennis JM, Fournier A, Spotz WF, St‐Cyr A, Taylor MA, Thomas SJ, Tufo H. 2005. High‐resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perform. Comput. Appl. 19: 225 – 235.en_US
dc.identifier.citedreferenceDennis JM, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, St‐Cyr A, Taylor MA, Worley PH. 2012. CAM‐SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl. 26: 74 – 89.en_US
dc.identifier.citedreferenceErtel H. 1942. Ein neuer hydrodynamischer Wirbelsatz. Meteorol. Z. 59: 271 – 281.en_US
dc.identifier.citedreferenceGarner ST, Nakamura N, Held IM. 1992. Nonlinear equilibrium of two‐dimensional Eady waves: A new perspective. J. Atmos. Sci. 49: 1984 – 1996.en_US
dc.identifier.citedreferenceGibbon JD, Holm DD. 2010. ‘ Stretching and folding diagnostics in solutions of the three‐dimensional Euler and Navier–Stokes equations ’. arXiv: 1012.359v1.en_US
dc.identifier.citedreferenceGray SL. 2006. Mechanisms of midlatitude cross‐tropopause transport using a potential vorticity budget approach. J. Geophys. Res. 111: D17113, doi: 10.1029/2005JD006259.en_US
dc.identifier.citedreferenceHaynes PH, McIntyre ME. 1987. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44: 828 – 841.en_US
dc.identifier.citedreferenceHaynes PH, McIntyre ME. 1990. On the conservation and impermeability theorems for potential vorticity. Mon. Weather Rev. 47: 2021 – 2031.en_US
dc.identifier.citedreferenceHoskins BJ, McIntyre ME, Robertson AW. 1985. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111: 877 – 946.en_US
dc.identifier.citedreferenceJablonowski C, Williamson DL. 2006a. A baroclinic instability test case for atmospheric model dynamical cores. Q. J. R. Meteorol. Soc. 132: 2943 – 2975.en_US
dc.identifier.citedreferenceJablonowski C, Williamson DL. 2006b. ‘ A baroclinic wave test case for dynamical cores of general circulation models: Model intercomparisons ’. Technical Note NCAR/TN‐469+STR. National Center for Atmospheric Research: Boulder, CO.en_US
dc.identifier.citedreferenceJablonowski C, Williamson DL. 2011. The pros and cons of diffusion, filters, and fixers in atmospheric general circulation models. In Numerical Techniques for Global Atmospheric Models, Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. (eds.) Lecture Notes in Science and Engineering 80: 381 – 493. Springer: Berlin.en_US
dc.identifier.citedreferenceJoeckel P, von Kuhlmann R, Lawrence MG, Steil B, Brenninkmeijer CAM, Crutzen PJ, Rasch PJ, Eaton B. 2001. On a fundamental problem in implementing flux‐form advection schemes for tracer transport in three‐dimensional general circulation and chemistry transport models. Q. J. R. Meteorol. Soc. 127: 1035 – 1052.en_US
dc.identifier.citedreferenceKent J, Jablonowski C, Whitehead JP, Rood RB. 2012a. Assessing tracer transport algorithms and the impact of vertical resolution in a finite‐volume dynamical core. Mon. Weather Rev. 140: 1620 – 1638.en_US
dc.identifier.citedreferenceKent J, Jablonowski C, Whitehead JP, Rood RB. 2012b. Downscale cascades in tracer‐transport test cases: An intercomparison of the dynamical cores in the Community Atmosphere Model CAM5. Geosci. Model Dev. 5: 1517 – 1530.en_US
dc.identifier.citedreferenceKent J, Ullrich PA, Jablonowski C. 2014. Dynamical Core Model Intercomparison Project: Tracer transport test cases. Q. J. R. Meteorol. Soc., doi: 10.1002/qj.2208.en_US
dc.identifier.citedreferenceKonor CS, Arakawa A. 1997. Design of an atmospheric model based on a generalized vertical coordinate. Mon. Weather Rev. 125: 1649 – 1673.en_US
dc.identifier.citedreferenceLamarque J‐F, Kinnison DE, Hess PG, Vitt FM. 2008. Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes. J. Geophys. Res. 113: D12301, doi: 10.1029/2007JD009277.en_US
dc.identifier.citedreferenceLauritzen PH, Ullrich PA, Nair RD. 2011. Atmospheric transport schemes: Desirable properties and a semi‐Lagrangian view on finite‐volume discretizations. In Numerical Techniques for Global Atmospheric Models, Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. (eds.) Lecture Notes in Science and Engineering 80: 187 – 248. Springer: Berlin.en_US
dc.identifier.citedreferenceLee SM, Yoon SC, Byun DW. 2004. The effect of mass inconsistency of the meteorological field generated by a common meteorological model on air quality modeling. Atmos. Environ. 38: 2917 – 2926.en_US
dc.identifier.citedreferenceLin SJ. 2004. A ‘vertically Lagrangian’ finite‐volume dynamical core for global models. Mon. Weather Rev. 132: 2293 – 2307.en_US
dc.identifier.citedreferenceLin SJ, Rood RB. 1996. Multidimensional flux‐form semi‐Lagrangian transport scheme. Mon. Weather Rev. 124: 2046 – 2070.en_US
dc.identifier.citedreferenceLin SJ, Rood RB. 1997. An explicit flux‐form semi‐Lagrangian shallow‐water model on the sphere. Q. J. R. Meteorol. Soc. 123: 2477 – 2498.en_US
dc.identifier.citedreferenceNair RD, Lauritzen PH. 2010. A class of deformational flow test‐cases for linear transport problems on the sphere. J. Comput. Phys. 229: 8868 – 8887.en_US
dc.identifier.citedreferenceNakamura N, Held IM. 1989. Nonlinear equilibration of two‐dimensional Eady waves. J. Atmos. Sci. 46: 3055 – 3064.en_US
dc.identifier.citedreferenceNeale RB, Chen CC, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Cameron‐Smith P, Collins WD, Iacono MJ, Easter RC, Liu X, Ghan SJ, Rasch PJ, Taylor MA. 2010. ‘ Description of the NCAR Community Atmosphere Model (CAM 5.0) ’, Technical Note NCAR/TN‐486+STR. National Center for Atmospheric Research: Boulder, CO.en_US
dc.identifier.citedreferenceNewman PA, Schoeberl MR, Plumb RA, Rosenfield JE. 1988. Mixing rates calculated from potential vorticity. J. Geophys. Res. 93: 5221 – 5240, doi: 10.1029/JD093iD05p05221.en_US
dc.identifier.citedreferenceOhkitani K. 1991. Wave number space dynamics of enstrophy cascade in a forced two‐dimensional turbulence. Phys. Fluids A 3: 1598 – 1611.en_US
dc.identifier.citedreferenceOvtchinnikov M, Easter RC. 2009. Nonlinear advection algorithms applied to interrelated tracer: Errors and implications for modeling aerosol‐cloud interactions. Mon. Weather Rev. 137: 632 – 644.en_US
dc.identifier.citedreferenceRasch PJ, Coleman DB, Mahowald N, Williamson DL, Lin SJ, Boville BA, Hess P. 2006. Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework. J. Clim. 19: 2243 – 2266.en_US
dc.identifier.citedreferenceReed KA, Jablonowski C. 2012. Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst. 4: M04 001.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.