Show simple item record

The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals

dc.contributor.authorSaur, Joachimen_US
dc.contributor.authorDuling, Stefanen_US
dc.contributor.authorRoth, Lorenzen_US
dc.contributor.authorJia, Xianzheen_US
dc.contributor.authorStrobel, Darrell F.en_US
dc.contributor.authorFeldman, Paul D.en_US
dc.contributor.authorChristensen, Ulrich R.en_US
dc.contributor.authorRetherford, Kurt D.en_US
dc.contributor.authorMcGrath, Melissa A.en_US
dc.contributor.authorMusacchio, Fabrizioen_US
dc.contributor.authorWennmacher, Alexandreen_US
dc.contributor.authorNeubauer, Fritz M.en_US
dc.contributor.authorSimon, Svenen_US
dc.contributor.authorHartkorn, Oliveren_US
dc.date.accessioned2015-05-04T20:36:25Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationSaur, Joachim; Duling, Stefan; Roth, Lorenz; Jia, Xianzhe; Strobel, Darrell F.; Feldman, Paul D.; Christensen, Ulrich R.; Retherford, Kurt D.; McGrath, Melissa A.; Musacchio, Fabrizio; Wennmacher, Alexandre; Neubauer, Fritz M.; Simon, Sven; Hartkorn, Oliver (2015). "The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals." Journal of Geophysical Research: Space Physics 120(3): 1715-1737.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111157
dc.description.abstractWe present a new approach to search for a subsurface ocean within Ganymede through observations and modeling of the dynamics of its auroral ovals. The locations of the auroral ovals oscillate due to Jupiter's time‐varying magnetospheric field seen in the rest frame of Ganymede. If an electrically conductive ocean is present, the external time‐varying magnetic field is reduced due to induction within the ocean and the oscillation amplitude of the ovals decreases. Hubble Space Telescope (HST) observations show that the locations of the ovals oscillate on average by 2.0° ±1.3°. Our model calculations predict a significantly stronger oscillation by 5.8° ± 1.3° without ocean compared to 2.2°±1.3° if an ocean is present. Because the ocean and the no‐ocean hypotheses cannot be separated by simple visual inspection of individual HST images, we apply a statistical analysis including a Monte Carlo test to also address the uncertainty caused by the patchiness of observed emissions. The observations require a minimum electrical conductivity of 0.09 S/m for an ocean assumed to be located between 150 km and 250 km depth or alternatively a maximum depth of the top of the ocean at 330 km. Our analysis implies that Ganymede's dynamo possesses an outstandingly low quadrupole‐to‐dipole moment ratio. The new technique applied here is suited to probe the interior of other planetary bodies by monitoring their auroral response to time‐varying magnetic fields.Key PointsNew technique to search for a subsurface ocean in Ganymede with a telescopeOcean affects auroral oscillation caused by time‐varying external magnetic fieldHST observations reveal weak auroral oscillation and imply existence of oceanen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMcGraw Hillen_US
dc.subject.otherelectromagnetic inductionen_US
dc.subject.otherHSTen_US
dc.subject.otherGanymedeen_US
dc.subject.othersubsurface oceanen_US
dc.titleThe search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovalsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111157/1/jgra51618.pdf
dc.identifier.doi10.1002/2014JA020778en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePlainaki, C., A. Milillo, S. Massetti, A. Mura, X. Jia, S. Orsini, V. Mangano, E. De Angelis, and R. Rispoli ( 2015 ), The H 2 O and O 2 exospheres of Ganymede: The result of a complex interaction between the jovian magnetospheric ions and the icy moon, Icarus, 245, 306 – 319, doi: 10.1016/j.icarus.2014.09.018.en_US
dc.identifier.citedreferenceKivelson, M. G., F. Bagenal, F. M. Neubauer, W. Kurth, C. Paranicas, and J. Saur ( 2004 ), Magnetospheric interactions with satellites, in Jupiter, edited by F. Bagenal, pp. 513 – 536, Cambridge Univ. Press, Univ. of Colo., Cambridge.en_US
dc.identifier.citedreferenceKopp, A., and W. Ip ( 2002 ), Resistive MHD simulations of Ganymede's magnetosphere: 1. Time variabilities of the magnetic field topology, J. Geophys. Res., 107 ( A12 ), 1490, doi: 10.1029/2001JA005071.en_US
dc.identifier.citedreferenceKrist, J. E., R. N. Hook, and F. Stoehr ( 2011 ), 20 years of Hubble Space Telescope optical modeling using Tiny Tim, in Society of Photo‐Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8127, edited by M. A. Kahan, pp. 18 – 19, SPIE, San Diego, Calif., doi: 10.1117/12.892762en_US
dc.identifier.citedreferenceLangel, R. A., and R. H. Estes ( 1982 ), A geomagnetic field spectrum, Geophys. Res. Lett., 9, 250 – 253, doi: 10.1029/GL009i004p00250.en_US
dc.identifier.citedreferenceLevy, E. H. ( 1979 ), Planetary dynamo amplification of ambient magnetic fields, in Proceedings of the Tenth Lunar and Planetary Science Conference, vol. 3, edited by N. W. Hinners, pp. 2335 – 2342, Pergamon Press, Inc., New Yorken_US
dc.identifier.citedreferenceMarconi, M. L. ( 2007 ), A kinetic model of Ganymede's atmosphere, Icarus, 190, 155 – 174, doi: 10.1016/j.icarus.2007.02.016.en_US
dc.identifier.citedreferenceMcGrath, M. A., X. Jia, K. D. Retherford, P. D. Feldman, D. F. Strobel, and J. Saur ( 2013 ), Aurora on Ganymede, J. Geophys. Res. Space Physics, 118, 2043 – 2054, doi: 10.1002/jgra.50122.en_US
dc.identifier.citedreferenceNeubauer, F. M. ( 1998 ), The sub‐Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res., 103 ( E9 ), 19,843 – 19,866.en_US
dc.identifier.citedreferencePaty, C., and R. Winglee ( 2004 ), Multi‐fluid simulations of Ganymede's magnetosphere, Geophys. Res. Lett., 31, L24806, doi: 10.1029/2004GL021220.en_US
dc.identifier.citedreferencePaty, C., and R. Winglee ( 2006 ), The role of ion cyclotron motion at Ganymde: Magnetic morphology and magnetospheric dynamics, Geophys. Res. Lett., 33, L10106, doi: 10.1029/2005GL025273.en_US
dc.identifier.citedreferencePaty, C., W. Paterson, and R. Winglee ( 2008 ), Ion energization in Ganymede's magnetosphere: Using multifluid simulations to interpret ion engergy spectrograms, J. Geophys. Res., 113, A06211, doi: 10.1029/2007JA012848.en_US
dc.identifier.citedreferenceRambaux, N., T. van Hoolst, and Ö. Karatekin ( 2011 ), Librational response of Europa, Ganymede, and Callisto with an ocean for a non‐Keplerian orbit, Astron. Astrophys., 527, A118, doi: 10.1051/0004‐6361/201015304.en_US
dc.identifier.citedreferenceRetherford, K. D., H. W. Moos, D. F. Strobel, and B. C. Wolven ( 2000 ), Io's equatorial spots: Morphology of neutral UV emissions, J. Geophys. Res., 105 ( A12 ), 27,157 – 27,165.en_US
dc.identifier.citedreferenceRoth, L., J. Saur, K. D. Retherford, D. F. Strobel, and J. R. Spencer ( 2011 ), Simulation of Io's auroral emission: Constraints on the atmosphere in eclipse, Icarus, 214, 495 – 509, doi: 10.1016/j.icarus.2011.05.014.en_US
dc.identifier.citedreferenceRoth, L., J. Saur, K. D. Retherford, D. F. Strobel, P. D. Feldman, M. A. McGrath, and F. Nimmo ( 2014 ), Transient water vapor at Europa's South Pole, Science, 343, 171 – 174, doi: 10.1126/science.1247051.en_US
dc.identifier.citedreferenceSaur, J. ( 2004 ), A model for Io's local electric field for a combined Alfvénic and unipolar inductor far‐field coupling, J. Geophys. Res., 109, A01210, doi: 10.1029/2002JA009354.en_US
dc.identifier.citedreferenceSaur, J., D. F. Strobel, and F. M. Neubauer ( 1998 ), Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere, J. Geophys. Res., 103 ( E9 ), 19,947 – 19,962.en_US
dc.identifier.citedreferenceSaur, J., F. M. Neubauer, D. F. Strobel, and M. E. Summers ( 2000 ), Io's ultraviolet aurora: Remote sensing of Io's interaction, Geophys. Res. Lett., 27 ( 18 ), 2893 – 2896.en_US
dc.identifier.citedreferenceSaur, J., F. M. Neubauer, and K. ‐H. Glassmeier ( 2010 ), Induced magnetic fields in solar system bodies, Space Sci. Rev., 152, 391 – 421, doi: 10.1007/s11214‐009‐9581‐y.en_US
dc.identifier.citedreferenceSaur, J., et al. ( 2011 ), Hubble space telescope/advanced camera for surveys observations of Europa's atmospheric ultraviolet emission at eastern elongation, Astrophys. J., 738, 153, doi: 10.1088/0004‐637X/738/2/153.en_US
dc.identifier.citedreferenceSaur, J., T. Grambusch, S. Duling, F. M. Neubauer, and S. Simon ( 2013 ), Magnetic energy fluxes in sub‐Alfvénic planet star and moon planet interactions, Astron. Astrophys., 552, A119, doi: 10.1051/0004‐6361/201118179.en_US
dc.identifier.citedreferenceSchilling, N., F. M. Neubauer, and J. Saur ( 2007 ), Time‐varying interaction of Europa with the jovian magnetosphere: Constraints on the conductivity of Europa's subsurface ocean, Icarus, 192, 41 – 55.en_US
dc.identifier.citedreferenceSchilling, N., F. M. Neubauer, and J. Saur ( 2008 ), Influence of the internally induced magnetic field on the plasma interaction of Europa, J. Geophys. Res., 113, A03203, doi: 10.1029/2007JA012842.en_US
dc.identifier.citedreferenceSeufert, M., J. Saur, and F. M. Neubauer ( 2011 ), Multi‐frequency electromagnetic sounding of the Galilean moons, Icarus, 214, 477 – 494, doi: 10.1016/j.icarus.2011.03.017.en_US
dc.identifier.citedreferenceSohl, F., T. Spohn, D. Breuer, and K. Nagel ( 2002 ), Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites, Icarus, 157, 104 – 119.en_US
dc.identifier.citedreferenceTelford, W. M. ( 1993 ), Applied Geophysics, Cambridge Univ. Press, Cambridge, New York.en_US
dc.identifier.citedreferenceVance, S., M. Bouffard, M. Choukroun, and C. Sotin ( 2014 ), Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice, Planet. Space Sci., 96, 62 – 70, doi: 10.1016/j.pss.2014.03.011.en_US
dc.identifier.citedreferenceVolwerk, M., M. G. Kivelson, K. K. Khurana, and R. L. McPherron ( 1999 ), Probing Ganymede's magnetosphere with field line resonances, J. Geophys. Res., 104 ( A7 ), 14,729 – 14,738.en_US
dc.identifier.citedreferenceWilliams, Q. ( 2009 ), Bottom‐up versus top‐down solidification of the cores of small solar system bodies: Constraints on paradoxical cores, Earth Planet. Sci. Lett., 284, 564 – 569, doi: 10.1016/j.epsl.2009.05.019.en_US
dc.identifier.citedreferenceWoods, T. N., F. G. Eparvier, S. M. Bailey, P. C. Chamberlin, J. Lean, G. J. Rottman, S. C. Solomon, W. K. Tobiska, and D. L. Woodraska ( 2005 ), Solar EUV Experiment (SEE): Mission overview and first results, J. Geophys. Res., 110, A01312, doi: 10.1029/2004JA010765.en_US
dc.identifier.citedreferenceZimmer, C., K. Khurana, and M. Kivelson ( 2000 ), Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations, Icarus, 147, 329 – 347.en_US
dc.identifier.citedreferenceAnderson, J. D., E. L. Lau, W. L. Sjogren, G. Schubert, and W. B. Moore ( 1996 ), Gravitational constraints on the internal structure of Ganymede, Nature, 384, 541 – 543.en_US
dc.identifier.citedreferenceBagenal, F., and P. A. Delamere ( 2011 ), Flow of mass and energy in the magnetospheres of Jupiter and Saturn, J. Geophys. Res., 116, A05209, doi: 10.1029/2010JA016294.en_US
dc.identifier.citedreferenceBevington, P. R., and D. K. Robinson ( 2003 ), Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill, New York.en_US
dc.identifier.citedreferenceChané, E., J. Saur, F. M. Neubauer, J. Raeder, and S. Poedts ( 2012 ), Observational evidence of Alfvén wings at the Earth, J. Geophys. Res., 117, A09217, doi: 10.1029/2012JA017628.en_US
dc.identifier.citedreferenceChristensen, U. R. ( 2015 ), Iron snow dynamo models for Ganymede, Icarus, 247, 248 – 259, doi: 10.1016/j.icarus.2014.10.024.en_US
dc.identifier.citedreferenceChristensen, U. R., V. Holzwarth, and A. Reiners ( 2009 ), Energy flux determines magnetic field strength of planets and stars, Nature, 457, 167 – 169, doi: 10.1038/nature07626.en_US
dc.identifier.citedreferenceConnerney, J. E. P., M. H. Acuna, N. F. Ness, and T. Satoh ( 1998 ), New models of Jupiter's magnetic field constrained by the Io Flux Tube footprint, J. Geophys. Res., 103, 11,929 – 11,939.en_US
dc.identifier.citedreferenceDessler, A. J. ( 1983 ), Physics of the Jovian Magnetosphere, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceDuling, S., J. Saur, and J. Wicht ( 2014 ), Consistent boundary conditions at nonconducting surfaces of planetary bodies: Applications in a new Ganymede MHD model, J. Geophys. Res. Space Physics, 119, 4412 – 4440, doi: 10.1002/2013JA019554.en_US
dc.identifier.citedreferenceEviatar, A., D. J. Williams, C. Paranicas, R. W. McEntire, B. H. Mauk, and M. G. Kivelson ( 2000 ), Trapped energetic electrons in the magnetosphere of Ganymede, J. Geophys. Res., 105, 5547 – 5554, doi: 10.1029/1999JA900450.en_US
dc.identifier.citedreferenceEviatar, A., D. F. Strobel, B. C. Wolfven, P. Feldman, M. A. McGrath, and D. J. Williams ( 2001 ), Excitation of the Ganymede ultraviolet aurora, Astrophys. J., 555, 1013 – 1019.en_US
dc.identifier.citedreferenceFeldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. Retherford, and B. C. Wolven ( 2000 ), HST/STIS ultraviolet imaging of polar aurora on Ganymede, Astrophys. J., 555, 1085 – 1090.en_US
dc.identifier.citedreferenceFrank, L. A., and W. R. Paterson ( 2000 ), Return to Io by the Galileo spacecraft: Plasma observations, J. Geophys. Res., 105 ( A11 ), 25,363 – 25,378.en_US
dc.identifier.citedreferenceGarrison, T. ( 2006 ), Essentials of Oceanography, Brooks Cole, Belmont, Calif.en_US
dc.identifier.citedreferenceGómez‐Pérez, N., and J. Wicht ( 2010 ), Behavior of planetary dynamos under the influence of external magnetic fields: Application to Mercury and Ganymede, Icarus, 209, 53 – 62, doi: 10.1016/j.icarus.2010.04.006.en_US
dc.identifier.citedreferenceHall, D. T., D. F. Strobel, P. D. Feldman, M. A. McGrath, and H. A. Weaver ( 1995 ), Detection of an oxygen atmosphere on Jupiter's moon Europa, Nature, 373 ( 6516 ), 677 – 679.en_US
dc.identifier.citedreferenceHall, D. T., P. D. Feldman, M. A. McGrath, and D. F. Strobel ( 1998 ), The far‐ultraviolet oxygen airglow of Europa and Ganymede, Astrophys. J., 499 ( 5 ), 475 – 481.en_US
dc.identifier.citedreferenceHand, K. P., and C. F. Chyba ( 2007 ), Empirical constraints on the salinity of the European ocean and implications for a thin ice shell, Icarus, 189, 424 – 438.en_US
dc.identifier.citedreferenceHauck, S. A., J. M. Aurnou, and A. J. Dombard ( 2006 ), Sulfur's impact on core evolution and magnetic field generation on Ganymede, J. Geophys. Res., 111, E09008, doi: 10.1029/2005JE002557.en_US
dc.identifier.citedreferenceHernandez, S., et al. ( 2014 ), STIS Instrument Handbook, Version 13.0, STScI, Baltimore, Md.en_US
dc.identifier.citedreferenceHess, S. L. G., B. Bonfond, P. Zarka, and D. Grodent ( 2011 ), Model of the Jovian magnetic field topology constrained by the Io auroral emissions, J. Geophys. Res., 116, A05217, doi: 10.1029/2010JA016262.en_US
dc.identifier.citedreferenceHussmann, H., F. Sohl, and T. Spohn ( 2006 ), Subsurface oceans and deep interiors of medium‐sized outer planet satellites and large trans‐neptunian objects, Icarus, 185, 258 – 273.en_US
dc.identifier.citedreferenceIp, W., and A. Kopp ( 2002 ), Resistive MHD simulations of Ganymede's magnetosphere: 2. Birkeland currents and particle energetics, J. Geophys. Res., 107 ( A12 ), 1491, doi: 10.1029/2001JA005072.en_US
dc.identifier.citedreferenceIp, W. ‐H., A. Kopp, and J. Hu ( 2004 ), On the star‐magnetosphere interaction of close‐in exoplanets, Astrophys. J., 602, L53 – L56.en_US
dc.identifier.citedreferenceJia, X., R. Walker, M. Kivelson, K. Khurana, and J. Linker ( 2008 ), Three‐dimensional MHD simulations of Ganymede's magnetosphere, J. Geophys. Res., 113, A06212, doi: 10.1029/2007JA012748.en_US
dc.identifier.citedreferenceJia, X., R. Walker, M. Kivelson, K. Khurana, and J. Linker ( 2009 ), Properties of Ganymede's magnetosphere inferred from improved three‐dimensional MHD simulations, J. Geophys. Res., 114, A09209, doi: 10.1029/2009JA014375.en_US
dc.identifier.citedreferenceJia, X., R. J. Walker, M. G. Kivelson, K. K. Khurana, and J. A. Linker ( 2010 ), Dynamics of Ganymede's magnetopause: Intermittent reconnection under steady external conditions, J. Geophys. Res., 115, A12202, doi: 10.1029/2010JA015771.en_US
dc.identifier.citedreferenceKhurana, K. K. ( 1997 ), Euler potential models of Jupiter's magnetospheric field, J. Geophys. Res., 102, 11,295 – 11,306.en_US
dc.identifier.citedreferenceKislyakova, K. G., M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko ( 2014 ), Magnetic moment and plasma environment of HD 209458b as determined from Ly α observations, Science, 346, 981 – 984, doi: 10.1126/science.1257829.en_US
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, C. T. Russell, R. J. Walker, J. Warnecke, F. V. Coroniti, C. Polanskey, D. J. Southwood, and G. Schubert ( 1996 ), Discovery of Ganymede's magnetic field by the Galileo spacecraft, Nature, 384, 537 – 541.en_US
dc.identifier.citedreferenceKivelson, M. G., J. Warnecke, L. Bennett, S. Joy, K. K. Khurana, J. A. Linker, C. T. Russell, R. J. Walker, and C. Polanskey ( 1998 ), Ganymede's magnetosphere: Magnetometer overview, J. Geophys. Res., 103, 19,963 – 19,972, doi: 10.1029/98JE00227.en_US
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, D. J. Stevenson, L. Bennett, S. Joy, C. T. Russell, R. J. Walker, C. Zimmer, and C. Polanskey ( 1999 ), Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment, J. Geophys. Res., 104 ( A3 ), 4609 – 4625.en_US
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, and M. Volwerk ( 2002 ), The permanent and inductive magnetic moments of Ganymede, Icarus, 157, 507 – 522.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.