Show simple item record

Investigation of Printing‐Based Graded Bulk‐Heterojunction Organic Solar Cells

dc.contributor.authorBottenfield, Christian G.en_US
dc.contributor.authorWei, Fananen_US
dc.contributor.authorPark, Hui Joonen_US
dc.contributor.authorGuo, L. Jayen_US
dc.contributor.authorLi, Guangyongen_US
dc.date.accessioned2015-05-04T20:36:29Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationBottenfield, Christian G.; Wei, Fanan; Park, Hui Joon; Guo, L. Jay; Li, Guangyong (2015). "Investigation of Printing‐Based Graded Bulk‐Heterojunction Organic Solar Cells." Energy Technology 3(4): 414-422.en_US
dc.identifier.issn2194-4288en_US
dc.identifier.issn2194-4296en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111163
dc.description.abstractA 2‐step method involving the evaporation of solvent through surface encapsulation and induced alignment (ESSENCIAL) has been used to create a compositionally graded active layer of interspersed acceptor and donor domains by printing‐based technologies, which can be used to fabricate solar cells with higher performance than that from traditional bulk heterojunction fabrication methods. Herein, to clarify the fundamental mechanism of the performance improvement, a multi‐scale simulation has been conducted to compare solar cells resulting from these two types of processing. The multi‐scale simulation identified the underlying improvements of the ESSENCIAL morphology over traditional morphologies. Monte Carlo simulations obtained higher hole‐mobility values and lower monomolecular recombination rates for the ESSENCIAL‐fabricated cells that, in conjunction with the optical and electrical components, showed higher short‐circuit currents, fill factors, and efficiencies, as indicated experimentally. The simulation offers the unique ability to model the varied active layer compositions and elucidate the underlying solar cell physics of complex morphologies.Explaining the physics: A multi‐scale simulation composed of optical, Monte Carlo, and electrical simulations is used to identify and understand the improvements of a new, printing‐based morphology for organic solar cells. Organic solar cells with normal bulk‐heterojunction morphologies and the new printing‐based morphologies are simulated and compared to identify the latter's fundamental improvements.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherorganic solar cellsen_US
dc.subject.otherprintingen_US
dc.subject.othercomposition gradingen_US
dc.subject.othermulti‐scale simulationen_US
dc.subject.othernanotechnologyen_US
dc.titleInvestigation of Printing‐Based Graded Bulk‐Heterojunction Organic Solar Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical and Computer Science, University of Michigan, Ann Arbor, MI (USA)en_US
dc.contributor.affiliationotherDivision of Energy Systems Research, Ajou University, Suwon (South Korea)en_US
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15213 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111163/1/414_ftp.pdf
dc.identifier.doi10.1002/ente.201402152en_US
dc.identifier.sourceEnergy Technologyen_US
dc.identifier.citedreferenceC. W. Tang, Appl. Phys. Lett. 1986, 48, 183.en_US
dc.identifier.citedreferenceM. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovoltaics 2012, 20, 12 – 20.en_US
dc.identifier.citedreferenceNREL—National Renewable Energy Laboratory, Best Research‐Cell Efficiencies, 2014, http://www.nrel.gov/ncpv/.en_US
dc.identifier.citedreferenceW. Brütting, Physics of Organic Semiconductors, Wiley, Weinheim, 2006, 1 – 14.en_US
dc.identifier.citedreferenceH. J. Park, M. G. Kang, S. H. Ahn, L. J. Guo, Adv. Mater. 2010, 22, E 247 –E 253.en_US
dc.identifier.citedreferenceH. J. Park, J. Y. Lee, T. Lee, L. J. Guo, Adv. Energy Mater. 2013, 3, 1135 – 1142.en_US
dc.identifier.citedreferenceS. G. Babiker, Y. Shuai, Res. J. Appl. Sci., Eng. Technol. 2012, 4, 495 – 499.en_US
dc.identifier.citedreferenceN. Li, D. Baran, K. Forberich, M. Turbiez, T. Ameri, F. C. Krebs, C. J. Brabec, Adv. Energy Mater. 2013, 3, 1597 – 1605.en_US
dc.identifier.citedreferenceJ. Gilot, M. M. Wienk, R. A. Janssen, Adv. Mater. 2010, 22, E 67 –E 71.en_US
dc.identifier.citedreferenceF. Wei, L. Liu, L. Liu, G. Li, IEEE J. Photovoltaics 2013, 3, 300 – 309.en_US
dc.identifier.citedreferenceB. A. Gregg, M. C. Hanna, J. Appl. Phys. 2003, 93, 3605.en_US
dc.identifier.citedreferenceA. Mayer, S. Scully, B. Hardin, M. Rowell, M. McGehee, Mater. Today 2007, 10, 28 – 33.en_US
dc.identifier.citedreferenceH. Kallmann, M. Pope, J. Chem. Phys. 1959, 30, 585 – 586.en_US
dc.identifier.citedreferenceC. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, S. Sariciftci, Chem. Phys. Lett. 2001, 340, 232 – 236.en_US
dc.identifier.citedreferenceNREL—National Renewable Energy Laboratory, Reference Solar Spectral Irradiance: Air Mass 1.5, 2013, AM 1.5 Spectrum Data, http://rredc.nrel.gov/solar/spectra/am1.5/.en_US
dc.identifier.citedreferenceL. Liu, PhD dissertation, University of Pittsburgh, 2011, 152.en_US
dc.identifier.citedreferenceG. F. Burkhard, E. T. Hoke, M. D. McGehee, Adv. Mater. 2010, 22, 3293 – 3297.en_US
dc.identifier.citedreferenceM. McGehee, G. Burkhard, E. Hoke, Transfer Matrix Optical Modeling, 2014, http://web.stanford.edu/group/mcgehee/.en_US
dc.identifier.citedreferenceD. A. G. Bruggeman, Ann. Phys. 1935, 416, 636 – 664.en_US
dc.identifier.citedreferenceR. Häusermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, B. Ruhstaller, J. Appl. Phys. 2009, 106, 104507.en_US
dc.identifier.citedreferenceL. Liu, G. Li, Solar Energy Mater Solar Cells 2011, 95, 2557 – 2563.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.