Show simple item record

Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland

dc.contributor.authorCastro, Analía E.en_US
dc.contributor.authorBenitez, Sergio G.en_US
dc.contributor.authorFarias Altamirano, Luz E.en_US
dc.contributor.authorSavastano, Luis E.en_US
dc.contributor.authorPatterson, Sean I.en_US
dc.contributor.authorMuñoz, Estela M.en_US
dc.date.accessioned2015-05-04T20:36:35Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05en_US
dc.identifier.citationCastro, Analía E. ; Benitez, Sergio G.; Farias Altamirano, Luz E.; Savastano, Luis E.; Patterson, Sean I.; Muñoz, Estela M. (2015). "Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland." Journal of Pineal Research 58(4): 439-451.en_US
dc.identifier.issn0742-3098en_US
dc.identifier.issn1600-079Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111177
dc.description.abstractCircadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage‐specific transcriptional regulators. NeuroD1 is a basic helix‐loop‐helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α‐ and β‐adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser274 and Ser336, associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation‐dependent manner.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNeuroD1en_US
dc.subject.othernuclear–cytoplasmic partitioningen_US
dc.subject.otherserine residuesen_US
dc.subject.otherpost‐translational modificationsen_US
dc.subject.otherpineal glanden_US
dc.subject.otherphosphorylationen_US
dc.titleExpression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal glanden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111177/1/jpi12228.pdf
dc.identifier.doi10.1111/jpi.12228en_US
dc.identifier.sourceJournal of Pineal Researchen_US
dc.identifier.citedreferenceKhoo S, Griffen SC, Xia Y et al. Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells. J Biol Chem 2003; 278: 32969 – 32977.en_US
dc.identifier.citedreferenceBailey MJ, Coon SL, Carter DA et al. Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling. J Biol Chem 2009; 284: 7606 – 7622.en_US
dc.identifier.citedreferencePfeffer M, Kuhn R, Krug L et al. Rhythmic variation in beta1‐adrenergic receptor mRNA levels in the rat pineal gland: circadian and developmental regulation. Eur J Neurosci 1998; 10: 2896 – 2904.en_US
dc.identifier.citedreferenceZemkova H, Stojilkovic SS, Klein DC. Norepinephrine causes a biphasic change in mammalian pinealocye membrane potential: role of alpha1B‐adrenoreceptors, phospholipase C, and Ca2+. Endocrinology 2011; 152: 3842 – 3851.en_US
dc.identifier.citedreferencePetersen HV, Jensen JN, Stein R et al. Glucose induced MAPK signalling influences NeuroD1‐mediated activation and nuclear localization. FEBS Lett 2002; 528: 241 – 245.en_US
dc.identifier.citedreferenceDufton C, Marcora E, Chae JH et al. Context‐dependent regulation of NeuroD activity and protein accumulation. Mol Cell Neurosci 2005; 28: 727 – 736.en_US
dc.identifier.citedreferenceYamazaki S, Yoshikawa T, Biscoe EW et al. Ontogeny of circadian organization in the rat. J Biol Rhythms 2009; 24: 55 – 63.en_US
dc.identifier.citedreferenceCho JH, Klein WH, Tsai MJ. Compensational regulation of bHLH transcription factors in the postnatal development of BETA2/NeuroD1‐null retina. Mech Dev 2007; 124: 543 – 550.en_US
dc.identifier.citedreferenceCherry TJ, Wang S, Bormuth I et al. NeuroD factors regulate cell fate and neurite stratification in the developing retina. J Neurosci 2011; 31: 7365 – 7379.en_US
dc.identifier.citedreferenceKiyama T, Mao CA, Cho JH et al. Overlapping spatiotemporal patterns of regulatory gene expression are required for neuronal progenitors to specify retinal ganglion cell fate. Vision Res 2011; 51: 251 – 259.en_US
dc.identifier.citedreferenceMao CA, Cho JH, Wang J et al. Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7. Development 2013; 140: 541 – 551.en_US
dc.identifier.citedreferenceGosmain Y, Marthinet E, Cheyssac C et al. Pax6 controls the expression of critical genes involved in pancreatic alpha cell differentiation and function. J Biol Chem 2003; 285: 33381 – 33393.en_US
dc.identifier.citedreferenceMarsich E, Vetere A, Di Piazza M et al. The PAX6 gene is activated by the basic helix‐loop‐helix transcription factor NeuroD/BETA2. Biochem J 2003; 376: 707 – 715.en_US
dc.identifier.citedreferenceRath MF, Bailey MJ, Kim JS et al. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down‐regulation is mediated by adrenergic‐cyclic adenosine 3′,5′‐monophosphate signaling. Endocrinology 2009; 150: 803 – 811.en_US
dc.identifier.citedreferenceRath MF, Bailey MJ, Kim JS et al. Developmental and daily expression of the Pax4 and Pax6 homeobox genes in the rat retina: localization of Pax4 in photoreceptor cells. J Neurochem 2009; 108: 285 – 294.en_US
dc.identifier.citedreferenceMiyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 1999; 13: 1647 – 1652.en_US
dc.identifier.citedreferenceLiu M, Pleasure SJ, Collins AE et al. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A 2000; 97: 865 – 870.en_US
dc.identifier.citedreferenceD'amico LA, Boujard D, Coumailleau P. The neurogenic factor NeuroD1 is expressed in post‐mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells. PLoS ONE 2013; 8: e66487.en_US
dc.identifier.citedreferenceAndrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O ‐linked glycosylation. J Biol Chem 2007; 282: 15589 – 15596.en_US
dc.identifier.citedreferenceMehmood R, Yasuhara N, Fukumoto M et al. Cross‐talk between distinct nuclear import pathways enables efficient nuclear import of E47 in conjunction with its partner transcription factors. Mol Biol Cell 2011; 22: 3715 – 3724.en_US
dc.identifier.citedreferenceSimonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55: 325 – 395.en_US
dc.identifier.citedreferenceKlein DC. Arylalkylamine N ‐acetyltransferase: “the Timezyme”. J Biol Chem 2007; 282: 4233 – 4237.en_US
dc.identifier.citedreferenceHo AK, Price DM, Terriff D et al. Timing of mitogen‐activated protein kinase (MAPK) activation in the rat pineal gland. Mol Cell Endocrinol 2006; 252: 34 – 39.en_US
dc.identifier.citedreferenceKuhn DM, Sakowski SA, Geddes TJ et al. Phosphorylation and activation of tryptophan hydroxylase 2: identification of serine‐19 as the substrate site for calcium, calmodulin‐dependent protein kinase II. J Neurochem 2007; 103: 1567 – 1573.en_US
dc.identifier.citedreferenceHumphries A, Klein D, Baler R et al. cDNA array analysis of pineal gene expression reveals circadian rhythmicity of the dominant negative helix‐loop‐helix protein‐encoding gene, Id‐1. J Neuroendocrinol 2002; 14: 101 – 108.en_US
dc.identifier.citedreferenceKlein DC. Evolution of the vertebrate pineal gland: the AANAT hypothesis. Chronobiol Int 2006; 23: 5 – 20.en_US
dc.identifier.citedreferenceFalcon J, Besseau L, Fuentes M et al. Structural and functional evolution of the pineal melatonin system in vertebrates. Ann N Y Acad Sci 2009; 1163: 101 – 111.en_US
dc.identifier.citedreferenceRath MF, Rohde K, Klein DC et al. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance. Neurochem Res 2013; 38: 1100 – 1112.en_US
dc.identifier.citedreferenceAcampora D, Mazan S, Lallemand Y et al. Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 1995; 121: 3279 – 3290.en_US
dc.identifier.citedreferenceMatsuo I, Kuratani S, Kimura C et al. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 1995; 9: 2646 – 2658.en_US
dc.identifier.citedreferenceEstivill‐Torrus G, Vitalis T, Fernandez‐Llebrez P et al. The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ. Mech Dev 2001; 109: 215 – 224.en_US
dc.identifier.citedreferenceMitchell TN, Free SL, Williamson KA et al. Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann Neurol 2003; 53: 658 – 663.en_US
dc.identifier.citedreferenceNishida A, Furukawa A, Koike C et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 2003; 6: 1255 – 1263.en_US
dc.identifier.citedreferenceRath MF, Muñoz E, Ganguly S et al. Expression of the Otx2 homeobox gene in the developing mammalian brain: embryonic and adult expression in the pineal gland. J Neurochem 2006; 97: 556 – 566.en_US
dc.identifier.citedreferenceAbouzeid H, Youssef MA, Elshakankiri N et al. PAX6 aniridia and interhemispheric brain anomalies. Mol Vis 2009; 15: 2074 – 2083.en_US
dc.identifier.citedreferenceYamazaki F, Moller M, Fu C et al. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Struct Funct 2014. doi: 10.1700/s00429‐014‐0740‐x.en_US
dc.identifier.citedreferenceLi X, Chen S, Wang Q et al. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina‐specific transcription factor CRX. Proc Natl Acad Sci U S A 1998; 95: 1876 – 1881.en_US
dc.identifier.citedreferenceFurukawa T, Morrow EM, Li T et al. Retinopathy and attenuated circadian entrainment in Crx‐deficient mice. Nat Genet 1999; 23: 466 – 470.en_US
dc.identifier.citedreferenceRovsing L, Clokie S, Bustos DM et al. Crx broadly modulates the pineal transcriptome. J Neurochem 2011; 119: 262 – 274.en_US
dc.identifier.citedreferenceRohde K, Rovsing L, Ho AK et al. Circadian dynamics of the cone‐rod homeobox (CRX) transcription factor in the rat pineal gland and its role in regulation of arylalkylamine N‐acetyltransferase (AANAT). Endocrinology 2014; 155: 2966 – 2975.en_US
dc.identifier.citedreferenceKoike C, Nishida A, Ueno S et al. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol 2007; 27: 8318 – 8329.en_US
dc.identifier.citedreferenceFukuhara C, Dirden JC, Tosini G. Circadian expression of period 1, period 2, and arylalkylamine N‐acetyltransferase mRNA in the rat pineal gland under different light conditions. Neurosci Lett 2000; 286: 167 – 170.en_US
dc.identifier.citedreferenceTakekida S, Yan L, Maywood ES et al. Differential adrenergic regulation of the circadian expression of the clock genes period1 and period2 in the rat pineal gland. Eur J Neurosci 2000; 12: 4557 – 4561.en_US
dc.identifier.citedreferenceFukuhara C, Dirden JC, Tosini G. Regulation of period 1 expression in cultured rat pineal. Neurosignals 2002; 11: 103 – 114.en_US
dc.identifier.citedreferenceSimonneaux V, Poirel VJ, Garidou ML et al. Daily rhythm and regulation of clock gene expression in the rat pineal gland. Brain Res Mol Brain Res 2004; 120: 164 – 172.en_US
dc.identifier.citedreferenceWongchitrat P, Felder‐Schmittbuhl MP, Govitrapong P et al. A noradrenergic sensitive endogenous clock is present in the rat pineal gland. Neuroendocrinology 2011; 94: 75 – 83.en_US
dc.identifier.citedreferenceHastings MH. Circadian clockwork: two loops are better than one. Nat Rev Neurosci 2000; 1: 143 – 146.en_US
dc.identifier.citedreferenceMuñoz E, Brewer M, Baler R. Circadian transcription. Thinking outside the E‐Box. J Biol Chem 2002; 277: 36009 – 36017.en_US
dc.identifier.citedreferenceMuñoz E, Baler R. The circadian E‐box: when perfect is not good enough. Chronobiol Int 2003; 20: 371 – 388.en_US
dc.identifier.citedreferenceKoike N, Yoo SH, Huang HC et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338: 349 – 354.en_US
dc.identifier.citedreferenceLee JE, Hollenberg SM, Snider L et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix‐loop‐helix protein. Science 1995; 268: 836 – 844.en_US
dc.identifier.citedreferenceNaya FJ, Stellrecht CM, Tsai MJ. Tissue‐specific regulation of the insulin gene by a novel basic helix‐loop‐helix transcription factor. Genes Dev 1995; 9: 1009 – 1019.en_US
dc.identifier.citedreferenceMutoh H, Fung BP, Naya FJ et al. The basic helix‐loop‐helix transcription factor BETA2/NeuroD is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Proc Natl Acad Sci U S A 1997; 94: 3560 – 3564.en_US
dc.identifier.citedreferencePoulin G, Turgeon B, Drouin J. NeuroD1/beta2 contributes to cell‐specific transcription of the proopiomelanocortin gene. Mol Cell Biol 1997; 17: 6673 – 6682.en_US
dc.identifier.citedreferenceChae JH, Stein GH, Lee JE. NeuroD: the predicted and the surprising. Mol Cells 2004; 18: 271 – 288.en_US
dc.identifier.citedreferenceCho JH, Tsai MJ. The role of BETA2/NeuroD1 in the development of the nervous system. Mol Neurobiol 2004; 30: 35 – 47.en_US
dc.identifier.citedreferenceLiu H, Etter P, Hayes S, et al. NeuroD1 regulates expression of thyroid hormone receptor 2 and cone opsins in the developing mouse retina. J Neurosci 2008; 28: 749 – 756.en_US
dc.identifier.citedreferenceLongo A, Guanga GP, Rose RB. Crystal structure of E47‐NeuroD1/beta2 bHLH domain‐DNA complex: heterodimer selectivity and DNA recognition. Biochemistry 2008; 47: 218 – 229.en_US
dc.identifier.citedreferenceMorrow EM, Furukawa T, Lee JE et al. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 1999; 126: 23 – 36.en_US
dc.identifier.citedreferenceCau E, Wilson SW. Ash1a and Neurogenin1 function downstream of Floating head to regulate epiphysial neurogenesis. Development 2003; 130: 2455 – 2466.en_US
dc.identifier.citedreferencePennesi ME, Cho JH, Yang Z et al. BETA2/NeuroD1 null mice: a new model for transcription factor‐dependent photoreceptor degeneration. J Neurosci 2003; 23: 453 – 461.en_US
dc.identifier.citedreferenceKlein DC. The 2004 Aschoff/Pittendrigh lecture: theory of the origin of the pineal gland‐a tale of conflict and resolution. J Biol Rhythms 2004; 19: 264 – 279.en_US
dc.identifier.citedreferencePennesi ME, Bramblett DE, Cho JH et al. A role for bHLH transcription factors in retinal degeneration and dysfunction. Adv Exp Med Biol 2006; 572: 155 – 161.en_US
dc.identifier.citedreferenceMuñoz EM, Bailey MJ, Rath MF et al. NeuroD1: developmental expression and regulated genes in the rodent pineal gland. J Neurochem 2007; 102: 887 – 899.en_US
dc.identifier.citedreferenceOchocinska MJ, Muñoz EM, Veleri S et al. NeuroD1 is required for survival of photoreceptors but not pinealocytes: results from targeted gene deletion studies. J Neurochem 2012; 123: 44 – 59.en_US
dc.identifier.citedreferenceKimiwada T, Sakurai M, Ohashi H et al. Clock genes regulate neurogenic transcription factors, including NeuroD1, and the neuronal differentiation of adult neural stem/progenitor cells. Neurochem Int 2009; 54: 277 – 285.en_US
dc.identifier.citedreferenceDuprè SM, Burt DW, Talbot R et al. Identification of melatonin‐regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinology 2008; 149: 5527 – 5539.en_US
dc.identifier.citedreferenceUnfried C, Burbach G, Korf HW et al. Melatonin receptor 1‐dependent gene expression in the mouse pars tuberalis as revealed by cDNA microarray analysis and in situ hybridization. J Pineal Res 2010; 48: 148 – 156.en_US
dc.identifier.citedreferenceSavastano LE, Castro AE, Fitt MR et al. A standardized surgical technique for rat superior cervical ganglionectomy. J Neurosci Methods 2010; 192: 22 – 33.en_US
dc.identifier.citedreferencePrice DM, Chik CL, Terriff D et al. Mitogen‐activated protein kinase phosphatase‐1 (MKP‐1): >100‐fold nocturnal and norepinephrine‐induced changes in the rat pineal gland. FEBS Lett 2004; 577: 220 – 226.en_US
dc.identifier.citedreferenceBenitez SG, Castro AE, Patterson SI et al. Hypoxic preconditioning differentially affects GABAergic and glutamatergic neuronal cells in the injured cerebellum of the neonatal rat. PLoS ONE 2014; 9: e102056.en_US
dc.identifier.citedreferenceGaudillière B, Konishi Y, De La Iglesia N et al. A CaMKII‐NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 2004; 41: 229 – 241.en_US
dc.identifier.citedreferenceCalvo JL, Boya J, Carbonell AL et al. Time of origin of the rat pineal gland cells. A bromodeoxyuridine immunohistochemical study. Histol Histopathol 2004; 19: 137 – 142.en_US
dc.identifier.citedreferenceHendzel MJ, Wei Y, Mancini MA et al. Mitosis‐specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 1997; 106: 348 – 360.en_US
dc.identifier.citedreferenceMaronde E, Stehle JH. The mammalian pineal gland: known facts, unknown facets. Trends Endocrinol Metab 2007; 18: 142 – 149.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.