Identification of a Prg4‐Expressing Articular Cartilage Progenitor Cell Population in Mice
dc.contributor.author | Kozhemyakina, Elena | en_US |
dc.contributor.author | Zhang, Minjie | en_US |
dc.contributor.author | Ionescu, Andreia | en_US |
dc.contributor.author | Ayturk, Ugur M. | en_US |
dc.contributor.author | Ono, Noriaki | en_US |
dc.contributor.author | Kobayashi, Akio | en_US |
dc.contributor.author | Kronenberg, Henry | en_US |
dc.contributor.author | Warman, Matthew L. | en_US |
dc.contributor.author | Lassar, Andrew B. | en_US |
dc.date.accessioned | 2015-05-04T20:36:35Z | |
dc.date.available | 2016-07-05T17:27:59Z | en |
dc.date.issued | 2015-05 | en_US |
dc.identifier.citation | Kozhemyakina, Elena; Zhang, Minjie; Ionescu, Andreia; Ayturk, Ugur M.; Ono, Noriaki; Kobayashi, Akio; Kronenberg, Henry; Warman, Matthew L.; Lassar, Andrew B. (2015). "Identification of a Prg4‐Expressing Articular Cartilage Progenitor Cell Population in Mice." Arthritis & Rheumatology 67(5): 1261-1273. | en_US |
dc.identifier.issn | 2326-5191 | en_US |
dc.identifier.issn | 2326-5205 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/111178 | |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.title | Identification of a Prg4‐Expressing Articular Cartilage Progenitor Cell Population in Mice | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Rheumatology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/111178/1/art39030.pdf | |
dc.identifier.doi | 10.1002/art.39030 | en_US |
dc.identifier.source | Arthritis & Rheumatology | en_US |
dc.identifier.citedreference | Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133: 3231 – 44. | en_US |
dc.identifier.citedreference | Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW. The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 2001; 203: 469 – 79. | en_US |
dc.identifier.citedreference | Yasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, et al. Roles of β‐catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 2011; 91: 1739 – 52. | en_US |
dc.identifier.citedreference | Candela ME, Cantley L, Yasuaha R, Iwamoto M, Pacifici M, Enomoto‐Iwamoto M. Distribution of slow‐cycling cells in epiphyseal cartilage and requirement of beta‐catenin signaling for their maintenance in growth plate. J Orthop Res 2014; 32: 661 – 8. | en_US |
dc.identifier.citedreference | Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117: 889 – 97. | en_US |
dc.identifier.citedreference | Marcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S, Robbins C, et al. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly‐arthropathy‐coxa vara‐pericarditis syndrome. Nat Genet 1999; 23: 319 – 22. | en_US |
dc.identifier.citedreference | Bahabri SA, Suwairi WM, Laxer RM, Polinkovsky A, Dalaan AA, Warman ML. The camptodactyly‐arthropathy–coxa vara–pericarditis syndrome: clinical features and genetic mapping to human chromosome 1. Arthritis Rheum 1998; 41: 730 – 5. | en_US |
dc.identifier.citedreference | Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 2005; 115: 622 – 31. | en_US |
dc.identifier.citedreference | Mugford JW, Sipila P, McMahon JA, McMahon AP. Osr1 expression demarcates a multi‐potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1‐dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 2008; 324: 88 – 98. | en_US |
dc.identifier.citedreference | Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, et al. High‐efficiency deleter mice show that FLPe is an alternative to Cre‐loxP. Nat Genet 2000; 25: 139 – 40. | en_US |
dc.identifier.citedreference | Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70 – 1. | en_US |
dc.identifier.citedreference | Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double‐fluorescent Cre reporter mouse. Genesis 2007; 45: 593 – 605. | en_US |
dc.identifier.citedreference | Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH. Foxa2 is required for the differentiation of pancreatic α‐cells. Dev Biol 2005; 278: 484 – 95. | en_US |
dc.identifier.citedreference | Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 2010; 19: 329 – 44. | en_US |
dc.identifier.citedreference | Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high‐throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010; 13: 133 – 40. | en_US |
dc.identifier.citedreference | Sun Y, Berger EJ, Zhao C, Jay GD, An KN, Amadio PC. Expression and mapping of lubricin in canine flexor tendon. J Orthop Res 2006; 24: 1861 – 8. | en_US |
dc.identifier.citedreference | Ogawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB‐dependent, fluid flow shear stress‐induced signaling pathways. Genes Dev 2014; 28: 127 – 39. | en_US |
dc.identifier.citedreference | Ionescu A, Kozhemyakina E, Nicolae C, Kaestner KH, Olsen BR, Lassar AB. FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program. Dev Cell 2012; 22: 927 – 39. | en_US |
dc.identifier.citedreference | Long F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 2001; 128: 5099 – 108. | en_US |
dc.identifier.citedreference | Henry SP, Jang CW, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Generation of aggrecan‐CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 2009; 47: 805 – 14. | en_US |
dc.identifier.citedreference | Rountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2: e355. | en_US |
dc.identifier.citedreference | Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423: 332 – 6. | en_US |
dc.identifier.citedreference | Lefebvre V, Bhattaram P. Vertebrate skeletogenesis. Curr Top Dev Biol 2010; 90: 291 – 317. | en_US |
dc.identifier.citedreference | Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today 2005; 75: 237 – 48. | en_US |
dc.identifier.citedreference | Onyekwelu I, Goldring MB, Hidaka C. Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem 2009; 107: 383 – 92. | en_US |
dc.identifier.citedreference | Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 2008; 316: 62 – 73. | en_US |
dc.identifier.citedreference | Hyde G, Dover S, Aszodi A, Wallis GA, Boot‐Handford RP. Lineage tracing using matrilin‐1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol 2007; 304: 825 – 33. | en_US |
dc.identifier.citedreference | Mankin HJ. Mitosis in articular cartilage of immature rabbits: a histologic, stathmokinetic (colchicine) and autoradiographic study. Clin Orthop Relat Res 1964; 34: 170 – 83. | en_US |
dc.identifier.citedreference | Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage 2007; 15: 403 – 13. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.