Show simple item record

Identification of a Prg4‐Expressing Articular Cartilage Progenitor Cell Population in Mice

dc.contributor.authorKozhemyakina, Elenaen_US
dc.contributor.authorZhang, Minjieen_US
dc.contributor.authorIonescu, Andreiaen_US
dc.contributor.authorAyturk, Ugur M.en_US
dc.contributor.authorOno, Noriakien_US
dc.contributor.authorKobayashi, Akioen_US
dc.contributor.authorKronenberg, Henryen_US
dc.contributor.authorWarman, Matthew L.en_US
dc.contributor.authorLassar, Andrew B.en_US
dc.date.accessioned2015-05-04T20:36:35Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05en_US
dc.identifier.citationKozhemyakina, Elena; Zhang, Minjie; Ionescu, Andreia; Ayturk, Ugur M.; Ono, Noriaki; Kobayashi, Akio; Kronenberg, Henry; Warman, Matthew L.; Lassar, Andrew B. (2015). "Identification of a Prg4‐Expressing Articular Cartilage Progenitor Cell Population in Mice." Arthritis & Rheumatology 67(5): 1261-1273.en_US
dc.identifier.issn2326-5191en_US
dc.identifier.issn2326-5205en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111178
dc.publisherWiley Periodicals, Inc.en_US
dc.titleIdentification of a Prg4‐Expressing Articular Cartilage Progenitor Cell Population in Miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelRheumatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111178/1/art39030.pdf
dc.identifier.doi10.1002/art.39030en_US
dc.identifier.sourceArthritis & Rheumatologyen_US
dc.identifier.citedreferenceRodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133: 3231 – 44.en_US
dc.identifier.citedreferenceHayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW. The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 2001; 203: 469 – 79.en_US
dc.identifier.citedreferenceYasuhara R, Ohta Y, Yuasa T, Kondo N, Hoang T, Addya S, et al. Roles of β‐catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Invest 2011; 91: 1739 – 52.en_US
dc.identifier.citedreferenceCandela ME, Cantley L, Yasuaha R, Iwamoto M, Pacifici M, Enomoto‐Iwamoto M. Distribution of slow‐cycling cells in epiphyseal cartilage and requirement of beta‐catenin signaling for their maintenance in growth plate. J Orthop Res 2014; 32: 661 – 8.en_US
dc.identifier.citedreferenceDowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117: 889 – 97.en_US
dc.identifier.citedreferenceMarcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S, Robbins C, et al. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly‐arthropathy‐coxa vara‐pericarditis syndrome. Nat Genet 1999; 23: 319 – 22.en_US
dc.identifier.citedreferenceBahabri SA, Suwairi WM, Laxer RM, Polinkovsky A, Dalaan AA, Warman ML. The camptodactyly‐arthropathy–coxa vara–pericarditis syndrome: clinical features and genetic mapping to human chromosome 1. Arthritis Rheum 1998; 41: 730 – 5.en_US
dc.identifier.citedreferenceRhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 2005; 115: 622 – 31.en_US
dc.identifier.citedreferenceMugford JW, Sipila P, McMahon JA, McMahon AP. Osr1 expression demarcates a multi‐potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1‐dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 2008; 324: 88 – 98.en_US
dc.identifier.citedreferenceRodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, et al. High‐efficiency deleter mice show that FLPe is an alternative to Cre‐loxP. Nat Genet 2000; 25: 139 – 40.en_US
dc.identifier.citedreferenceSoriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70 – 1.en_US
dc.identifier.citedreferenceMuzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double‐fluorescent Cre reporter mouse. Genesis 2007; 45: 593 – 605.en_US
dc.identifier.citedreferenceLee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH. Foxa2 is required for the differentiation of pancreatic α‐cells. Dev Biol 2005; 278: 484 – 95.en_US
dc.identifier.citedreferenceMaes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 2010; 19: 329 – 44.en_US
dc.identifier.citedreferenceMadisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high‐throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 2010; 13: 133 – 40.en_US
dc.identifier.citedreferenceSun Y, Berger EJ, Zhao C, Jay GD, An KN, Amadio PC. Expression and mapping of lubricin in canine flexor tendon. J Orthop Res 2006; 24: 1861 – 8.en_US
dc.identifier.citedreferenceOgawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB‐dependent, fluid flow shear stress‐induced signaling pathways. Genes Dev 2014; 28: 127 – 39.en_US
dc.identifier.citedreferenceIonescu A, Kozhemyakina E, Nicolae C, Kaestner KH, Olsen BR, Lassar AB. FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program. Dev Cell 2012; 22: 927 – 39.en_US
dc.identifier.citedreferenceLong F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 2001; 128: 5099 – 108.en_US
dc.identifier.citedreferenceHenry SP, Jang CW, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Generation of aggrecan‐CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 2009; 47: 805 – 14.en_US
dc.identifier.citedreferenceRountree RB, Schoor M, Chen H, Marks ME, Harley V, Mishina Y, et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2004; 2: e355.en_US
dc.identifier.citedreferenceKronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423: 332 – 6.en_US
dc.identifier.citedreferenceLefebvre V, Bhattaram P. Vertebrate skeletogenesis. Curr Top Dev Biol 2010; 90: 291 – 317.en_US
dc.identifier.citedreferencePacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today 2005; 75: 237 – 48.en_US
dc.identifier.citedreferenceOnyekwelu I, Goldring MB, Hidaka C. Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem 2009; 107: 383 – 92.en_US
dc.identifier.citedreferenceKoyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 2008; 316: 62 – 73.en_US
dc.identifier.citedreferenceHyde G, Dover S, Aszodi A, Wallis GA, Boot‐Handford RP. Lineage tracing using matrilin‐1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol 2007; 304: 825 – 33.en_US
dc.identifier.citedreferenceMankin HJ. Mitosis in articular cartilage of immature rabbits: a histologic, stathmokinetic (colchicine) and autoradiographic study. Clin Orthop Relat Res 1964; 34: 170 – 83.en_US
dc.identifier.citedreferenceHunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage 2007; 15: 403 – 13.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.