Show simple item record

Evaluation of treatment efficacy using a Bayesian mixture piecewise linear model of longitudinal biomarkers

dc.contributor.authorZhao, Lilien_US
dc.contributor.authorFeng, Daien_US
dc.contributor.authorNeelon, Brianen_US
dc.contributor.authorBuyse, Marcen_US
dc.date.accessioned2015-05-04T20:36:37Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05-10en_US
dc.identifier.citationZhao, Lili; Feng, Dai; Neelon, Brian; Buyse, Marc (2015). "Evaluation of treatment efficacy using a Bayesian mixture piecewise linear model of longitudinal biomarkers." Statistics in Medicine 34(10): 1733-1746.en_US
dc.identifier.issn0277-6715en_US
dc.identifier.issn1097-0258en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111181
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMarcel Dekkeren_US
dc.subject.otherchange pointen_US
dc.subject.othermixture modelen_US
dc.subject.otherBayesian hierarchical modelen_US
dc.subject.otherlongitudinal dataen_US
dc.subject.otherPSAen_US
dc.subject.othertumor growth profileen_US
dc.titleEvaluation of treatment efficacy using a Bayesian mixture piecewise linear model of longitudinal biomarkersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111181/1/sim6445.pdf
dc.identifier.doi10.1002/sim.6445en_US
dc.identifier.sourceStatistics in Medicineen_US
dc.identifier.citedreferenceStein W, Gulley J, Schlom J, Madan R, Dahut W, Figg W, Ning YM, Arlen P, Price D, Bates S, Fojo T. Tumor regression and growth rates determined in five intramural NCI prostate cancer trials: the growth rate constant as an indicator of therapeutic efficacy. Clinical Cancer Research 2011; 17: 907 – 917.en_US
dc.identifier.citedreferenceClaret L, Lu JF, Sun YN, Bruno R. Development of a modeling framework to simulate efficacy endpoints for motesanib in patients with thyroid cancer. Clinical Pharmacology & Therapeutics 2010; 66: 1141 – 1149.en_US
dc.identifier.citedreferenceClaret L, Gupta M, Han K, Joshi A, Sarapa N, He J, Powell B, Bruno R. Evaluation of tumor‐size response metrics to predict overall survival in Western and Chinese patients with first‐line metastatic colorectal cancer. Journal of Clinical Oncology 2013; 31: 2110 – 2114.en_US
dc.identifier.citedreferenceCeleux G, Forbes F, Robert C, Titterington D. Deviance information criteria for missing data models. Bayesian Analysis 2006; 1: 651 – 674.en_US
dc.identifier.citedreferenceWatanabe S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 2010; 11: 3571 – 3594.en_US
dc.identifier.citedreferenceIbrahim JG, Chen MH, Sinha D. Bayesian Survival Analysis. Springer: New York, 2001.en_US
dc.identifier.citedreferenceNeal RM. Slice sampling. The Annals of Statistics 2003; 31: 705 – 767.en_US
dc.identifier.citedreferenceCarlin BP, Gelfand AE, Smith AFM. Hierarchical Bayesian analysis of changepoint problems. Journal of the Royal Statistical Society. Series C‐Applied Statistics 1992; 41: 389 – 405.en_US
dc.identifier.citedreferenceGreen PJ. Reversible‐jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995; 82: 711 – 732.en_US
dc.identifier.citedreferenceAndrews DWK. Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica 2001; 69: 683 – 773.en_US
dc.identifier.citedreferenceDemidenko E. Three endpoints of in vivo tumour radiobiology and their statistical estimation. International Journal of Radiation Biology 2010; 86: 164 – 173.en_US
dc.identifier.citedreferenceWu J. Assessment of antitumor activity for tumor xenograft studies using exponential growth models. Journal of Biopharmaceutical Statistics 2011; 21: 472 – 483.en_US
dc.identifier.citedreferenceZangeneh SZ. Model‐based methods for robust finite population inference in the presence of external information. Ph.D. Thesis, University of Michigan Ann Arbor, 2012.en_US
dc.identifier.citedreferenceWang Y, Sung C, Dartois C, Ramchandani R, Booth BP, Rock E, Gobburu J. Elucidation of relationship between tumor size and survival in non‐small‐cell lung cancer patients can aid early decision making in clinical drug development. Clinical Pharmacology & Therapeutics 2009; 86: 167 – 174.en_US
dc.identifier.citedreferenceClaret L, Girard P, Hoff PM, Cutsem EV, Zuideveld KP, Van Cutsem E, Jorga K, Fagerberg J, Bruno R. Model‐based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. Journal of Clinical Oncology 2009; 66: 4103 – 4108.en_US
dc.identifier.citedreferenceHaario H, Saksman S, Tamminen J. An adaptive metropolis algorithm. Bernoulli 2001; 7: 223 – 242.en_US
dc.identifier.citedreferenceCowles MK, Carlin BP. Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association 1996; 91: 883 – 904.en_US
dc.identifier.citedreferenceGelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis, 3rd edition. Chapman & Hall/CRC: Boca Raton, 2013.en_US
dc.identifier.citedreferenceSpiegelhalter DJ, Best NG, Carlin B, van de Linde A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society 2002; 64: 583 – 639.en_US
dc.identifier.citedreferenceBuyse M, Vangeneugden T, Bijnens L, Geys H, Renard D, Burzykowski T, Molenberghs G. Validation of biomarkers and surrogates for clinical endpoints, chap. In Biomarkers in Clinical Drug Development, Bloom JC, Dean RA (eds). Marcel Dekker: New York, 2003; 149 – 168.en_US
dc.identifier.citedreferencePanageas KS, Ben‐Porat L, Dickler MN, Chapman PB, Schrag D. When you look matters: the effect of assessment schedule on progression‐free survival. Journal of the National Cancer Institute 2007; 99: 428 – 432.en_US
dc.identifier.citedreferenceKarrison T, Maitland M, Stadler W, Ratain M. Design of phase II cancer trials using a continuous endpoint of change in tumor size: application to a study of sorafenib and erlotinib in non small‐cell lung cancer. Journal of the National Cancer Institute 2007; 99: 1455 – 1461.en_US
dc.identifier.citedreferenceAdjei AA, Christian M, Ivy P. Novel designs and end points for phase II clinical trials. Clinical Cancer Research 2009; 15: 1866 – 1872.en_US
dc.identifier.citedreferenceWason J, Mander A, Eisen T. Reducing sample sizes in two‐stage phase II cancer trials by using continuous tumour shrinkage end‐points. European Journal of Cancer 2011; 47: 983 – 999.en_US
dc.identifier.citedreferenceSlate EH, Clark LC. Using PSA to detect prostate cancer onset: an application of Bayesian retrospective and prospective changepoint identification. Journal of Educational and Behavioral Statistics 1999; 26: 443 – 468.en_US
dc.identifier.citedreferencePauler DK, Finkelstein DM. Predicting time to prostate cancer recurrence based on joint models for non‐linear longitudinal biomarkers and event time outcomes. Statistics in Medicine 2002; 21: 3897 – 3911.en_US
dc.identifier.citedreferenceBellera CA, Hanley JA, Joseph L, Albertsen PC. Hierarchical changepoint models for biochemical markers illustrated by tracking postradiotherapy prostate‐specific antigen series in men with prostate cancer. Annals of Epidemiology 2008; 18: 270 – 282.en_US
dc.identifier.citedreferenceBellera CA, Hanley JA, Joseph L, Albertsen PC. A statistical evaluation of rules for biomedical failure after radiotherapy in men treated for prostate cancer. International Journal of Radiation Oncology Biology Physics 2009; 75: 1357 – 1363.en_US
dc.identifier.citedreferencePauler DK, Laird NM. A mixture model for longitudinal data with application to assessment of noncompliance. Journal of the Royal Statistical Society: Series A 2000; 56: 464 – 472.en_US
dc.identifier.citedreferenceHall CB, Ying J, Kuo L, Lipton RB. Bayesian and profile likelihood change point methods for modeling cognitive function over time. Computational Statistics and Data Analysis 2003; 42: 91 – 109.en_US
dc.identifier.citedreferenceKiuchi A, Hartigan J, Holford T, Rubinstein P, Stevens C. Change points in the series of T4 counts prior to AIDS. Biometrics 1995; 51: 236 – 248.en_US
dc.identifier.citedreferenceZhao L, Morgan MA, Parsels LA, Maybaum J, Lawrence TS, Normolle D. Bayesian hierarchical changepoint methods in modeling the tumor growth profiles in xenograft experiments. Clinical Cancer Research 2010; 17: 1 – 7.en_US
dc.identifier.citedreferenceSkates SJ, Pauler DK, Jacobs IJ. Screening based on the risk of cancer calculation from Bayesian hierarchical changepoint and mixture models of longitudinal markers. Journal of the American Statistical Association 2001; 96: 429 – 439.en_US
dc.identifier.citedreferenceGarre FG, Zwinderman AH, Geskus RB, Sijpkens YWJ. A joint latent class changepoint model to improve the prediction of time to graft failure. Journal of the Royal Statistical Society: Series A 2008; 171: 299 – 308.en_US
dc.identifier.citedreferenceZhao L, Banerjee M. Bayesian piecewise mixture model for racial disparity in prostate cancer. Computational Statistics and Data Analysis 2012; 56: 362 – 369.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.