Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

Show simple item record Freissinet, C. en_US Glavin, D. P. en_US Mahaffy, P. R. en_US Miller, K. E. en_US Eigenbrode, J. L. en_US Summons, R. E. en_US Brunner, A. E. en_US Buch, A. en_US Szopa, C. en_US Archer, P. D. en_US Franz, H. B. en_US Atreya, S. K. en_US Brinckerhoff, W. B. en_US Cabane, M. en_US Coll, P. en_US Conrad, P. G. en_US Des Marais, D. J. en_US Dworkin, J. P. en_US Fairén, A. G. en_US François, P. en_US Grotzinger, J. P. en_US Kashyap, S. en_US Kate, I. L. en_US Leshin, L. A. en_US Malespin, C. A. en_US Martin, M. G. en_US Martin‐torres, F. J. en_US McAdam, A. C. en_US Ming, D. W. en_US Navarro‐gonzález, R. en_US Pavlov, A. A. en_US Prats, B. D. en_US Squyres, S. W. en_US Steele, A. en_US Stern, J. C. en_US Sumner, D. Y. en_US Sutter, B. en_US Zorzano, M.‐p. en_US 2015-05-04T20:36:41Z 2016-05-10T20:26:28Z en 2015-03 en_US
dc.identifier.citation Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G. ; François, P. ; Grotzinger, J. P.; Kashyap, S.; Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin‐torres, F. J. ; McAdam, A. C.; Ming, D. W.; Navarro‐gonzález, R. ; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M.‐p. (2015). "Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars." Journal of Geophysical Research: Planets 120(3): 495-514. en_US
dc.identifier.issn 2169-9097 en_US
dc.identifier.issn 2169-9100 en_US
dc.description.abstract The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long‐term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles.Key PointsFirst in situ evidence of nonterrestrial organics in Martian surface sedimentsChlorinated hydrocarbons identified in the Sheepbed mudstone by SAMOrganics preserved in sample exposed to ionizing radiation and oxidative condition en_US
dc.publisher Wiley Periodicals, Inc. en_US
dc.publisher McGraw‐Hill en_US
dc.subject.other oxychlorine en_US
dc.subject.other organic molecules en_US
dc.subject.other chlorobenzene en_US
dc.subject.other MSL en_US
dc.subject.other Mars en_US
dc.subject.other SAM en_US
dc.title Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars en_US
dc.type Article en_US
dc.rights.robots IndexNoFollow en_US
dc.subject.hlbsecondlevel Geological Sciences en_US
dc.subject.hlbtoplevel Science en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.identifier.doi 10.1002/2014JE004737 en_US
dc.identifier.source Journal of Geophysical Research: Planets en_US
dc.identifier.citedreference Blake, D. F., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341 ( 6153 ), doi: 10.1126/science.1239505. en_US
dc.identifier.citedreference Biemann, K., et al. ( 1977 ), The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82 ( 28 ), 4641 – 4658, doi: 10.1029/JS082i028p04641. en_US
dc.identifier.citedreference Biemann, K., et al. ( 1976 ), Search for organic and volatile inorganic‐compounds in 2 surface samples from Chryse‐Planitia Region of Mars, Science, 194 ( 4260 ), 72 – 76. en_US
dc.identifier.citedreference Biemann, K., and J. L. Bada ( 2011 ), Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro‐Gonzalez et al, J. Geophys. Res., 116, E12001, doi: 10.1029/2011JE003869. en_US
dc.identifier.citedreference Benner, S. A., K. G. Devine, L. N. Matveeva, and D. H. Powell ( 2000 ), The missing organic molecules on Mars, Proc. Natl. Acad. Sci. U.S.A., 97 ( 6 ), 2425 – 2430. en_US
dc.identifier.citedreference Archer, P. D., et al. ( 2014 ), Abundances and implications of volatile‐bearing species from Evolved Gas Analysis of the Rocknest aeolian deposit, Gale Crater, Mars, J. Geophys. Res. Planets, 119, 237 – 254, doi: 10.1002/2013JE004493. en_US
dc.identifier.citedreference Anderson, M. S., I. Katz, M. Petkov, B. Blakkolb, J. Mennella, S. D'Agostino, J. Crisp, J. Evans, J. Feldman, and D. Limonadi ( 2012 ), In situ cleaning of instruments for the sensitive detection of organics on Mars, Rev. Sci. Instrum., 83 ( 10 ), doi: 10.1063/1061.4757861. en_US
dc.identifier.citedreference Grotzinger, J. P., et al. ( 2014 ), A habitable fluvio‐lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1242777. en_US
dc.identifier.citedreference Grotzinger, J. P., et al. ( 2012 ), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170 ( 1–4 ), 5 – 56. en_US
dc.identifier.citedreference Glavin, D. P., et al. ( 2013 ), Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J. Geophys. Res. Planets, 118, 1955 – 1973, doi: 10.1002/jgre.20144. en_US
dc.identifier.citedreference Glavin, D. P., H. J. Cleaves, M. Schubert, A. Aubrey, and J. L. Bada ( 2004 ), New method for estimating bacterial cell abundances in natural samples by use of sublimation, Appl. Environ. Microbiol., 70 ( 10 ), 5923 – 5928. en_US
dc.identifier.citedreference Gibson, E. K. ( 1992 ), Volatiles in interplanetary dust particles—A review, J. Geophys. Res., 97 ( E3 ), 3865 – 3875, doi: 10.1029/92JE00033. en_US
dc.identifier.citedreference Farmer, J. D., and D. J. Des Marais ( 1999 ), Exploring for a record of ancient Martian life, J. Geophys. Res., 104 ( E11 ), 26,977 – 26,995, doi: 10.1029/1998JE000540. en_US
dc.identifier.citedreference Farley, K. A., et al. ( 2014 ), In‐situ radiometric and exposure age dating of the Martian surface, Science, 343 ( 6169 ), doi: 10.1126/science.1247166. en_US
dc.identifier.citedreference Deamer, D. W., and R. M. Pashley ( 1989 ), Amphiphilic components of the Murchison carbonaceous chondrite: Surface properties and membrane formation, Origins Life Evol. Biosphere, 19 ( 1 ), 21 – 38. en_US
dc.identifier.citedreference Carey, F. A. ( 1993 ), Organic Chemistry, 5th ed., McGraw‐Hill, Boston, Mass. en_US
dc.identifier.citedreference Bish, D. L., et al. ( 2013 ), X‐ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, 341 ( 6153 ), doi: 10.1126/science.1238932. en_US
dc.identifier.citedreference Vaniman, D. T., et al. ( 2014 ), Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1243480. en_US
dc.identifier.citedreference Summons, R. E., J. P. Amend, D. Bish, R. Buick, G. D. Cody, D. J. Des Marais, G. Dromart, J. L. Eigenbrode, A. H. Knoll, and D. Y. Sumner ( 2011 ), Preservation of Martian organic and environmental records: Final report of the Mars biosignature working group, Astrobiology, 11 ( 2 ), 157 – 181. en_US
dc.identifier.citedreference Steininger, H., F. Goesmann, and W. Goetz ( 2012 ), Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils, Planet. Space Sci., 71 ( 1 ), 9 – 17. en_US
dc.identifier.citedreference Steele, A., et al. ( 2012 ), A reduced organic carbon component in Martian basalts, Science, 337 ( 6091 ), 212 – 215. en_US
dc.identifier.citedreference Shock, E. L. ( 1990 ), Geochemical constraints on the origin of organic‐compounds in hydrothermal systems, Origins Life Evol. Biosphere, 20 ( 3–4 ), 331 – 367. en_US
dc.identifier.citedreference Sephton, M. A. ( 2012 ), Pyrolysis and mass spectrometry studies of meteoritic organic matter, Mass Spectrom. Rev., 31 ( 5 ), 560 – 569. en_US
dc.identifier.citedreference Pavlov, A. A., G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy ( 2012 ), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, L13202, doi: 10.1029/2012GL052166. en_US
dc.identifier.citedreference Oro, J., and G. Holzer ( 1979 ), Photolytic degradation and oxidation of organic‐compounds under simulated Martian conditions, J. Mol. Evol., 14 ( 1–3 ), 153 – 160. en_US
dc.identifier.citedreference Navarro‐Gonzalez, R., E. Vargas, J. de la Rosa, A. C. Raga, and C. P. McKay ( 2010 ), Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J. Geophys. Res., 115, E12010, doi: 10.1029/2010JE003599. en_US
dc.identifier.citedreference Ming, D. W., et al. ( 2014 ), Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1245267. en_US
dc.identifier.citedreference Miller, K. E., R. E. Summons, J. L. Eigenbrode, C. Freissinet, D. P. Glavin, and M. G. Martin ( 2013 ), Analogue experiments identify possible precursor compounds for chlorohydrocarbons detected in SAM, Abstract P23B‐1785 presented at 2013 Fall Meeting, AGU, San Francisco, Calif. en_US
dc.identifier.citedreference McLennan, S. M., et al. ( 2014 ), Elemental geochemistry of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1244734. en_US
dc.identifier.citedreference McLafferty, F. W. ( 1959 ), Mass spectrometric analysis—Molecular rearrangements, Anal. Chem., 31 ( 1 ), 82 – 87. en_US
dc.identifier.citedreference Mahaffy, P. R., et al. ( 2012 ), The sample analysis at Mars investigation and instrument suite, Space Sci. Rev., 170 ( 1–4 ), 401 – 478. en_US
dc.identifier.citedreference Leshin, L. A., et al. ( 2013 ), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover, Science, 341 ( 6153 ), doi: 10.1126/science.1238937. en_US
dc.identifier.citedreference Kounaves, S. P., B. L. Carrier, G. D. O'Neil, S. T. Stroble, and M. W. Claire ( 2014 ), Evidence of Martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics, Icarus, 229, 206 – 213. en_US
dc.identifier.citedreference Keller, J. M., et al. ( 2006 ), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res., 111, E03S08, doi: 10.1029/2006JE002679. en_US
dc.identifier.citedreference Hecht, M. H., et al. ( 2009 ), Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site, Science, 325 ( 5936 ), 64 – 67. en_US
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)

Search Deep Blue

Advanced Search

Browse by

My Account


Available Now

MLibrary logo