Show simple item record

Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

dc.contributor.authorFreissinet, C.en_US
dc.contributor.authorGlavin, D. P.en_US
dc.contributor.authorMahaffy, P. R.en_US
dc.contributor.authorMiller, K. E.en_US
dc.contributor.authorEigenbrode, J. L.en_US
dc.contributor.authorSummons, R. E.en_US
dc.contributor.authorBrunner, A. E.en_US
dc.contributor.authorBuch, A.en_US
dc.contributor.authorSzopa, C.en_US
dc.contributor.authorArcher, P. D.en_US
dc.contributor.authorFranz, H. B.en_US
dc.contributor.authorAtreya, S. K.en_US
dc.contributor.authorBrinckerhoff, W. B.en_US
dc.contributor.authorCabane, M.en_US
dc.contributor.authorColl, P.en_US
dc.contributor.authorConrad, P. G.en_US
dc.contributor.authorDes Marais, D. J.en_US
dc.contributor.authorDworkin, J. P.en_US
dc.contributor.authorFairén, A. G.en_US
dc.contributor.authorFrançois, P.en_US
dc.contributor.authorGrotzinger, J. P.en_US
dc.contributor.authorKashyap, S.en_US
dc.contributor.authorKate, I. L.en_US
dc.contributor.authorLeshin, L. A.en_US
dc.contributor.authorMalespin, C. A.en_US
dc.contributor.authorMartin, M. G.en_US
dc.contributor.authorMartin‐torres, F. J.en_US
dc.contributor.authorMcAdam, A. C.en_US
dc.contributor.authorMing, D. W.en_US
dc.contributor.authorNavarro‐gonzález, R.en_US
dc.contributor.authorPavlov, A. A.en_US
dc.contributor.authorPrats, B. D.en_US
dc.contributor.authorSquyres, S. W.en_US
dc.contributor.authorSteele, A.en_US
dc.contributor.authorStern, J. C.en_US
dc.contributor.authorSumner, D. Y.en_US
dc.contributor.authorSutter, B.en_US
dc.contributor.authorZorzano, M.‐p.en_US
dc.date.accessioned2015-05-04T20:36:41Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationFreissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G. ; François, P. ; Grotzinger, J. P.; Kashyap, S.; Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin‐torres, F. J. ; McAdam, A. C.; Ming, D. W.; Navarro‐gonzález, R. ; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M.‐p. (2015). "Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars." Journal of Geophysical Research: Planets 120(3): 495-514.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111191
dc.description.abstractThe Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long‐term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles.Key PointsFirst in situ evidence of nonterrestrial organics in Martian surface sedimentsChlorinated hydrocarbons identified in the Sheepbed mudstone by SAMOrganics preserved in sample exposed to ionizing radiation and oxidative conditionen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMcGraw‐Hillen_US
dc.subject.otheroxychlorineen_US
dc.subject.otherorganic moleculesen_US
dc.subject.otherchlorobenzeneen_US
dc.subject.otherMSLen_US
dc.subject.otherMarsen_US
dc.subject.otherSAMen_US
dc.titleOrganic molecules in the Sheepbed Mudstone, Gale Crater, Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111191/1/jgre20375.pdf
dc.identifier.doi10.1002/2014JE004737en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceBlake, D. F., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341 ( 6153 ), doi: 10.1126/science.1239505.en_US
dc.identifier.citedreferenceBiemann, K., et al. ( 1977 ), The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82 ( 28 ), 4641 – 4658, doi: 10.1029/JS082i028p04641.en_US
dc.identifier.citedreferenceBiemann, K., et al. ( 1976 ), Search for organic and volatile inorganic‐compounds in 2 surface samples from Chryse‐Planitia Region of Mars, Science, 194 ( 4260 ), 72 – 76.en_US
dc.identifier.citedreferenceBiemann, K., and J. L. Bada ( 2011 ), Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro‐Gonzalez et al, J. Geophys. Res., 116, E12001, doi: 10.1029/2011JE003869.en_US
dc.identifier.citedreferenceBenner, S. A., K. G. Devine, L. N. Matveeva, and D. H. Powell ( 2000 ), The missing organic molecules on Mars, Proc. Natl. Acad. Sci. U.S.A., 97 ( 6 ), 2425 – 2430.en_US
dc.identifier.citedreferenceArcher, P. D., et al. ( 2014 ), Abundances and implications of volatile‐bearing species from Evolved Gas Analysis of the Rocknest aeolian deposit, Gale Crater, Mars, J. Geophys. Res. Planets, 119, 237 – 254, doi: 10.1002/2013JE004493.en_US
dc.identifier.citedreferenceAnderson, M. S., I. Katz, M. Petkov, B. Blakkolb, J. Mennella, S. D'Agostino, J. Crisp, J. Evans, J. Feldman, and D. Limonadi ( 2012 ), In situ cleaning of instruments for the sensitive detection of organics on Mars, Rev. Sci. Instrum., 83 ( 10 ), doi: 10.1063/1061.4757861.en_US
dc.identifier.citedreferenceGrotzinger, J. P., et al. ( 2014 ), A habitable fluvio‐lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1242777.en_US
dc.identifier.citedreferenceGrotzinger, J. P., et al. ( 2012 ), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170 ( 1–4 ), 5 – 56.en_US
dc.identifier.citedreferenceGlavin, D. P., et al. ( 2013 ), Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J. Geophys. Res. Planets, 118, 1955 – 1973, doi: 10.1002/jgre.20144.en_US
dc.identifier.citedreferenceGlavin, D. P., H. J. Cleaves, M. Schubert, A. Aubrey, and J. L. Bada ( 2004 ), New method for estimating bacterial cell abundances in natural samples by use of sublimation, Appl. Environ. Microbiol., 70 ( 10 ), 5923 – 5928.en_US
dc.identifier.citedreferenceGibson, E. K. ( 1992 ), Volatiles in interplanetary dust particles—A review, J. Geophys. Res., 97 ( E3 ), 3865 – 3875, doi: 10.1029/92JE00033.en_US
dc.identifier.citedreferenceFarmer, J. D., and D. J. Des Marais ( 1999 ), Exploring for a record of ancient Martian life, J. Geophys. Res., 104 ( E11 ), 26,977 – 26,995, doi: 10.1029/1998JE000540.en_US
dc.identifier.citedreferenceFarley, K. A., et al. ( 2014 ), In‐situ radiometric and exposure age dating of the Martian surface, Science, 343 ( 6169 ), doi: 10.1126/science.1247166.en_US
dc.identifier.citedreferenceDeamer, D. W., and R. M. Pashley ( 1989 ), Amphiphilic components of the Murchison carbonaceous chondrite: Surface properties and membrane formation, Origins Life Evol. Biosphere, 19 ( 1 ), 21 – 38.en_US
dc.identifier.citedreferenceCarey, F. A. ( 1993 ), Organic Chemistry, 5th ed., McGraw‐Hill, Boston, Mass.en_US
dc.identifier.citedreferenceBish, D. L., et al. ( 2013 ), X‐ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, 341 ( 6153 ), doi: 10.1126/science.1238932.en_US
dc.identifier.citedreferenceVaniman, D. T., et al. ( 2014 ), Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1243480.en_US
dc.identifier.citedreferenceSummons, R. E., J. P. Amend, D. Bish, R. Buick, G. D. Cody, D. J. Des Marais, G. Dromart, J. L. Eigenbrode, A. H. Knoll, and D. Y. Sumner ( 2011 ), Preservation of Martian organic and environmental records: Final report of the Mars biosignature working group, Astrobiology, 11 ( 2 ), 157 – 181.en_US
dc.identifier.citedreferenceSteininger, H., F. Goesmann, and W. Goetz ( 2012 ), Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils, Planet. Space Sci., 71 ( 1 ), 9 – 17.en_US
dc.identifier.citedreferenceSteele, A., et al. ( 2012 ), A reduced organic carbon component in Martian basalts, Science, 337 ( 6091 ), 212 – 215.en_US
dc.identifier.citedreferenceShock, E. L. ( 1990 ), Geochemical constraints on the origin of organic‐compounds in hydrothermal systems, Origins Life Evol. Biosphere, 20 ( 3–4 ), 331 – 367.en_US
dc.identifier.citedreferenceSephton, M. A. ( 2012 ), Pyrolysis and mass spectrometry studies of meteoritic organic matter, Mass Spectrom. Rev., 31 ( 5 ), 560 – 569.en_US
dc.identifier.citedreferencePavlov, A. A., G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy ( 2012 ), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, L13202, doi: 10.1029/2012GL052166.en_US
dc.identifier.citedreferenceOro, J., and G. Holzer ( 1979 ), Photolytic degradation and oxidation of organic‐compounds under simulated Martian conditions, J. Mol. Evol., 14 ( 1–3 ), 153 – 160.en_US
dc.identifier.citedreferenceNavarro‐Gonzalez, R., E. Vargas, J. de la Rosa, A. C. Raga, and C. P. McKay ( 2010 ), Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J. Geophys. Res., 115, E12010, doi: 10.1029/2010JE003599.en_US
dc.identifier.citedreferenceMing, D. W., et al. ( 2014 ), Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1245267.en_US
dc.identifier.citedreferenceMiller, K. E., R. E. Summons, J. L. Eigenbrode, C. Freissinet, D. P. Glavin, and M. G. Martin ( 2013 ), Analogue experiments identify possible precursor compounds for chlorohydrocarbons detected in SAM, Abstract P23B‐1785 presented at 2013 Fall Meeting, AGU, San Francisco, Calif.en_US
dc.identifier.citedreferenceMcLennan, S. M., et al. ( 2014 ), Elemental geochemistry of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1244734.en_US
dc.identifier.citedreferenceMcLafferty, F. W. ( 1959 ), Mass spectrometric analysis—Molecular rearrangements, Anal. Chem., 31 ( 1 ), 82 – 87.en_US
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2012 ), The sample analysis at Mars investigation and instrument suite, Space Sci. Rev., 170 ( 1–4 ), 401 – 478.en_US
dc.identifier.citedreferenceLeshin, L. A., et al. ( 2013 ), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover, Science, 341 ( 6153 ), doi: 10.1126/science.1238937.en_US
dc.identifier.citedreferenceKounaves, S. P., B. L. Carrier, G. D. O'Neil, S. T. Stroble, and M. W. Claire ( 2014 ), Evidence of Martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics, Icarus, 229, 206 – 213.en_US
dc.identifier.citedreferenceKeller, J. M., et al. ( 2006 ), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res., 111, E03S08, doi: 10.1029/2006JE002679.en_US
dc.identifier.citedreferenceHecht, M. H., et al. ( 2009 ), Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site, Science, 325 ( 5936 ), 64 – 67.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.