Show simple item record

Investigation of interbasin exchange and interannual variability in Lake Erie using an unstructured‐grid hydrodynamic model

dc.contributor.authorNiu, Qianruen_US
dc.contributor.authorXia, Mengen_US
dc.contributor.authorRutherford, Edward S.en_US
dc.contributor.authorMason, Doran M.en_US
dc.contributor.authorAnderson, Eric J.en_US
dc.contributor.authorSchwab, David J.en_US
dc.date.accessioned2015-05-04T20:36:47Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationNiu, Qianru; Xia, Meng; Rutherford, Edward S.; Mason, Doran M.; Anderson, Eric J.; Schwab, David J. (2015). "Investigation of interbasin exchange and interannual variability in Lake Erie using an unstructured‐grid hydrodynamic model." Journal of Geophysical Research: Oceans 120(3): 2212-2232.en_US
dc.identifier.issn2169-9275en_US
dc.identifier.issn2169-9291en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111204
dc.description.abstractInterbasin exchange and interannual variability in Lake Erie's three basins are investigated with the help of a three‐dimensional unstructured‐grid‐based Finite Volume Coastal Ocean Model (FVCOM). Experiments were carried out to investigate the influence of grid resolutions and different sources of wind forcing on the lake dynamics. Based on the calibrated model, we investigated the sensitivity of lake dynamics to major external forcing, and seasonal climatological circulation patterns are presented and compared with the observational data and existing model results. It was found that water exchange between the western basin (WB) and the central basin (CB) was mainly driven by hydraulic and density‐driven flows, while density‐driven flows dominate the interaction between the CB and the eastern basin (EB). River‐induced hydraulic flows magnify the eastward water exchange and impede the westward one. Surface wind forcing shifts the pathway of hydraulic flows in the WB, determines the gyre pattern in the CB, contributes to thermal mixing, and magnifies interbasin water exchange during winter. Interannual variability is mainly driven by the differences in atmospheric forcing, and is most prominent in the CB.Key Points:Hydraulic and density flows both dominate interbasin water exchangeInterannual variability is dominated by atmospheric forcingDominant mechanisms of interbasin water exchange vary interseasonallyen_US
dc.publisherWayne State Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFVCOMen_US
dc.subject.otherwater exchangeen_US
dc.subject.othermodelen_US
dc.subject.otherLake Erieen_US
dc.subject.otherGreat Lakesen_US
dc.titleInvestigation of interbasin exchange and interannual variability in Lake Erie using an unstructured‐grid hydrodynamic modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111204/1/jgrc21159.pdf
dc.identifier.doi10.1002/2014JC010457en_US
dc.identifier.sourceJournal of Geophysical Research: Oceansen_US
dc.identifier.citedreferenceMichalak, A. M., et al. ( 2013 ), Record‐setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions, Proc. Natl. Acad. Sci. U. S. A., 110 ( 16 ), 6448 – 6452, doi: 10.1073/pnas.1216006110.en_US
dc.identifier.citedreferenceHaney, R. L. ( 1991 ), On the pressure gradient force over steep topography in sigma coordinate ocean models, J. Phys. Oceanogr., 21 ( 4 ), 610 – 619.en_US
dc.identifier.citedreferenceHawley, N., and B. J. Eadie ( 2007 ), Observations of sediment transport in Lake Erie during the winter of 2004–2005, J. Great Lakes Res., 33 ( 4 ), 816 – 827.en_US
dc.identifier.citedreferenceKliem, N., and J. D. Pietrzak ( 1999 ), On the pressure gradient error in sigma coordinate ocean models: A comparison with a laboratory experiment, J. Geophys. Res., 104 ( C12 ), 29,781 – 29,799, doi: 10.1029/1999JC900188.en_US
dc.identifier.citedreferenceLam, D. C. L., and W. M. Schertzer ( 1987 ), Lake Erie thermocline model results: Comparison with 1967–1982 data and relation to anoxic occurrences, J. Great Lakes Res., 13 ( 4 ), 757 – 769, doi: 10.1016/S0380-1330(87)71689-X.en_US
dc.identifier.citedreferenceLam, D. C. L., and W. M. Schertzer (Eds.) ( 1999 ), Potential Climate Change Effects on Great Lakes Hydrodynamics and Water Quality, 232 pp., ASCE, Reston, Va.en_US
dc.identifier.citedreferenceLeón, L. F., J. Imberger, R. E. Smith, R. E. Hecky, D. C. Lam, and W. M. Schertzer ( 2005 ), Modeling as a tool for nutrient management in Lake Erie: A hydrodynamics study, J. Great Lakes Res., 31, 309 – 318, doi: 10.1016/S0380-1330(05)70323-3.en_US
dc.identifier.citedreferenceMcCormick, M. J., and G. A. Meadows ( 1988 ), An intercomparison of four mixed layer models in a shallow inland sea, J. Geophys. Res., 93 ( C6 ), 6774 – 6788, doi: 10.1029/JC093iC06p06774.en_US
dc.identifier.citedreferenceMellor, G. L., and T. Yamada ( 1982 ), Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20 ( 4 ), 851 – 875, doi: 10.1029/RG020i004p00851.en_US
dc.identifier.citedreferenceMellor G. L., T. Ezer, and L. Y. Oey ( 1994 ), The pressure gradient conundrum of sigma coordinate ocean models, J. Atmos. Oceanic. Technol., 11 ( 4 ), 1126 – 1134, doi: 10.1175/1520-0426(1994)011 <1126:TPGCOS>2.0.CO;2.en_US
dc.identifier.citedreferenceMellor, G. L., L. Y. Oey, and T. Ezer ( 1998 ), Sigma coordinate pressure gradient errors and the seamount problem, J. Atmos. Oceanic. Technol., 15 ( 5 ), 1122 – 1131, doi: 10.1175/1520-0426(1998)015 <1122:SCPGEA>2.0.CO;2.en_US
dc.identifier.citedreferenceMesinger, F., et al. ( 2006 ), North American regional reanalysis, Bull. Am. Meteorol. Soc., 87, 343 – 360, doi: 10.1175/BAMS-87-3-343.en_US
dc.identifier.citedreferenceMuth, K. M., D. R. Wolfert, and M. T. Bur ( 1986 ), Environmental study of fish spawning and nursery areas in the St. Clair‐Detroit River System, Admin. Rep. 86–6, U.S. Geol. Surv., Great Lakes Sci. Cent., Ann Arbor, Mich.en_US
dc.identifier.citedreferenceNeff, B. P., and J. R. Nicholas ( 2005 ), Uncertainty in the Great Lakes water balance, U.S. Geol. Surv. Sci. Invest. Rep., 2004–5100, 42 pp.en_US
dc.identifier.citedreferenceQuinn, F. H., and E. B. Wylie ( 1972 ), Transient Analysis of the Detroit River by the Implicit Method, Water Resour. Res., 8 ( 6 ), 1461 – 1469, doi: 10.1029/WR008i006p01461.en_US
dc.identifier.citedreferencePedersen, H. H. ( 2010 ), Internal pressure gradient errors in sigma‐coordinate ocean models: The finite volume and weighted approaches, MS thesis, University of Bergen, Bergen, Norway.en_US
dc.identifier.citedreferenceRao, Y. R., N. Hawley, M. N. Charlton, and W. M. Schertzer ( 2008 ), Physical processes and hypoxia in the central basin of Lake Erie, Limnol. Oceanogr., 53 ( 5 ), 2007 – 2020, doi: 10.4319/lo.2008.53.5.2007.en_US
dc.identifier.citedreferenceRetana, A. G. ( 2008 ), Salinity transport in a finite‐volume sigma‐layer three‐dimensional model, PhD thesis, 706 pp., Univ. of New Orleans, New Orleans.en_US
dc.identifier.citedreferenceSaylor, J. H., and G. S. Miller ( 1987 ), Studies of large‐scale currents in Lake Erie, J. Great Lakes Res., 13 ( 4 ), 487 – 514, doi: 10.1016/S0380-1330(87)71668-2.en_US
dc.identifier.citedreferenceSchertzer, W. M., J. H. Saylor, F. M. Boyce, D. G. Robertson, and F. Rosa ( 1987 ), Seasonal thermal cycle of Lake Erie, J. Great Lakes Res., 13 ( 4 ), 468 – 486.en_US
dc.identifier.citedreferenceSchwab, D. J. ( 1978 ), Simulation and forecasting of Lake Erie storm surges, Mon. Weather Rev., 106 ( 10 ), 1476 – 1487, doi: 10.1175/1520-0493(1978)106 <1476:SAFOLE>2.0.CO;2.en_US
dc.identifier.citedreferenceSchwab, D. J., and K. W. Bedford ( 1994 ), Initial implementation of the great lakes forecasting system: A real‐time system for predicting lake circulation and thermal structure, Water Qual. Res. J. Can., 29 ( 2–3 ), 203 – 220.en_US
dc.identifier.citedreferenceSchwab, D. J., D. Beletsky, J. DePinto, and M. Dolan ( 2009 ), A hydrodynamic approach to modeling phosphorus distribution in Lake Erie, J. Great Lakes Res., 35 ( 1 ), 50 – 60.en_US
dc.identifier.citedreferenceShore, J. A. ( 2009 ), Modelling the circulation and exchange of Kingston Basin and Lake Ontario with FVCOM, Ocean Modell., 30, 106 – 114, doi: 10.1016/j.ocemod.2009.06.007.en_US
dc.identifier.citedreferenceSmagorinsky, J. ( 1963 ), General circulation experiments with the primitive equations. 1: The basic experiment, Mon. Weather Rev., 91 ( 3 ), 99 – 164, doi: 10.1175/1520-0493(1963)091 <0099:GCEWTP>2.3.CO;2.en_US
dc.identifier.citedreferenceWilson, M. C., J. A. Shore, and Y. R. Rao ( 2013 ), Sensitivity of the simulated Kingston Basin—Lake Ontario summer temperature profile using FVCOM, Atmos. Ocean, 51 ( 3 ), 319 – 331, doi: 10.1080/07055900.2013.800017.en_US
dc.identifier.citedreferenceChen, C., H. Huang, R. C. Beardsley, Q. Xu, R. Limeburner, G. W. Cowles, Y. Sun, J. Qi, and H. Lin ( 2011 ), Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM, J. Geophys. Res., 116, C12010, doi: 10.1029/2011JC007054.en_US
dc.identifier.citedreferenceChiocchio, F. ( 1981 ), Lake Erie hypolimnion and mesolimnion flow exchange between central and eastern basins during 1978, Internal Rep. APSD 9, Natl. Water Res. Inst., Canada Cent. for Inland Waters, Burlington, Ont.en_US
dc.identifier.citedreferenceAnderson, E. J., and D. J. Schwab ( 2013 ), Predicting the oscillating bi‐directional exchange flow in the Straits of Mackinac, J. Great Lakes Res., 39 ( 4 ), 663 – 671, doi: 10.1016/j.jglr.2013.09.001.en_US
dc.identifier.citedreferenceAnderson, E. J., D. J. Schwab, and G. A. Lang ( 2010 ), Real‐time hydraulic and hydrodynamic model of the St. Clair River, Lake St. Clair, Detroit River System, J. Hydraul. Eng., 136 ( 8 ), 507 – 518, doi: 10.1061/(ASCE)HY.1943-7900.0000203.en_US
dc.identifier.citedreferenceAustin, J., and S. Colman ( 2008 ), A century of temperature variability in Lake Superior, Limnol. Oceanogr., 53 ( 6 ), 2724 – 2730.en_US
dc.identifier.citedreferenceBai, X., J. Wang, D. J. Schwab, Y. Yang, L. Luo, G. A. Leshkevich, and S. Liu ( 2013 ), Modeling 1993–2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM, Ocean Modell., 65, 40 – 63, doi: 10.1016/j.ocemod.2013.02.003.en_US
dc.identifier.citedreferenceBartish, T. M. ( 1984 ), Thermal stratification in the western basin of Lake Erie, MS thesis, Ohio State Univ., Columbus.en_US
dc.identifier.citedreferenceBartish, T. M. ( 1987 ), A review of exchange processes among the three basins of Lake Erie, J. Great Lakes Res., 13 ( 4 ), 607 – 618, doi: 10.1016/S0380-1330(87)71676-1.en_US
dc.identifier.citedreferenceBeardsley, R. C., C. Chen, and Q. Xu ( 2013 ), Coastal flooding in Scituate (MA): A FVCOM study of the 27 December 2010 nor'easter, J. Geophys. Res. Oceans, 118, 6030 – 6045, doi: 10.1002/2013JC008862.en_US
dc.identifier.citedreferenceBeletsky, D., and D. J. Schwab ( 2001 ), Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability, J. Geophys. Res., 106 ( C9 ), 19,745 – 19,771, doi: 10.1029/2000JC000691.en_US
dc.identifier.citedreferenceBeletsky, D., and D. J. Schwab ( 2008 ), Climatological circulation in Lake Michigan, Geophys. Res. Lett., 35, L21604, doi: 10.1029/2008GL035773.en_US
dc.identifier.citedreferenceBeletsky, D., J. H. Saylor, and D. J. Schwab ( 1999 ), Mean circulation in the Great Lakes, J. Great Lakes Res., 25 ( 1 ), 78 – 93, doi: 10.1016/S0380-1330(99)70718-5.en_US
dc.identifier.citedreferenceBeletsky D., D. J. Schwab, and M. McCormick ( 2006 ), Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan, J. Geophys. Res., 111, C10010, doi: 10.1029/2005JC003222.en_US
dc.identifier.citedreferenceBeletsky, D., N. Hawley, Y. R. Rao, H. A. Vanderploeg, R. Beletsky, D. J. Schwab, and S. A. Ruberg ( 2012 ), Summer thermal structure and anticyclonic circulation of Lake Erie, Geophys. Res. Lett., 39, L06605, doi: 10.1029/2012GL051002.en_US
dc.identifier.citedreferenceBeletsky, D., N. Hawley, Y. R. Rao ( 2013 ), Modeling summer circulation and thermal structure of Lake Erie, J. Geophys. Res. Oceans, 118, 6238 – 6252, doi: 10.1002/2013JC008854.en_US
dc.identifier.citedreferenceBennington, V., G. A. McKinley, N. Kimura, and C. H. Wu ( 2010 ), General circulation of Lake superior: Mean, variability, and trends from 1979 to 2006, J. Geophys. Res., 115, C12015, doi: 10.1029/2010JC006261.en_US
dc.identifier.citedreferenceBolsenga, S. J., and C. E. Herdendorf ( 1993 ), Lake Erie and Lake St. Clair Handbook, pp. 11 – 229, Wayne State Univ. Press, Detroit.en_US
dc.identifier.citedreferenceBoyce, F. M., F. Chiocchio, B. Eid, F. Penicka, and F. Rosa ( 1980 ), Hypolimnion flow between the central and eastern basins of Lake Erie during 1977 (interbasin hypolimnion flows), J. Great Lakes Res., 6 ( 4 ), 290 – 306, doi: 10.1016/S0380-1330(80)72110-X.en_US
dc.identifier.citedreferenceBrant, R., and C. E. Herdendorf ( 1972 ), Delineation of Great Lakes estuaries, In Proc. 15'th Conf. Great Lakes Res., pp. 710 – 718. Internat. Assoc. Great Lakes Res.en_US
dc.identifier.citedreferenceChen, C., R. C. Beardsley, and G. Cowles ( 2006 ), An unstructured grid, finite‐volume coastal ocean model (FVCOM) system, Oceanography, 19 ( 1 ), 78 – 89, doi: 10.5670/oceanog.2006.92.en_US
dc.identifier.citedreferenceChen, C., et al. ( 2007 ), A finite volume numerical approach for coastal ocean circulation studies: Comparison with finite difference models, J. Geophys. Res., 112, C03018, doi: 10.1029/2006JC003485.en_US
dc.identifier.citedreferenceCôté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth ( 1998 ), The operational CMC‐MRB global environmental multiscale (GEM) model. Part I: Design considerations and formulation, Mon. Weather Rev., 126 ( 6 ), 1373 – 1395.en_US
dc.identifier.citedreferenceCrosby, D. S., L. C. Breaker, and W. H. Gemmill ( 1993 ), A proposed definition for vector correlation in geophysics: Theory and application, J. Atmos. Oceanic Technol., 10, 355 – 367.en_US
dc.identifier.citedreferenceFay D., and H. Kerslake ( 2009 ), Development of New Stage‐Fall‐Discharge Equations for The St. Clair and Detroit Rivers, Int. Upper Great Lakes Study, 48 pp., Environ. Canada Great Lakes Regul. Off. Cornwall, Ont., Canada.en_US
dc.identifier.citedreferenceGalperin, B., L. H. Kantha, S. Hassid, and A. Rosati ( 1988 ), A quasi‐equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci., 45, 55 – 62, doi: 10.1175/1520-0469(1988)045 <0055:AQETEM>2.0.CO;2.en_US
dc.identifier.citedreferenceGedney, R. T., and W. Lick ( 1972 ), Wind‐driven currents in Lake Erie, J. Geophys. Res., 77 ( 15 ), 2714 – 2723, doi: 10.1029/JC077i015p02714.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.