Show simple item record

Host species composition influences infection severity among amphibians in the absence of spillover transmission

dc.contributor.authorHan, Barbara A.en_US
dc.contributor.authorKerby, Jacob L.en_US
dc.contributor.authorSearle, Catherine L.en_US
dc.contributor.authorStorfer, Andrewen_US
dc.contributor.authorBlaustein, Andrew R.en_US
dc.date.accessioned2015-05-04T20:36:51Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationHan, Barbara A.; Kerby, Jacob L.; Searle, Catherine L.; Storfer, Andrew; Blaustein, Andrew R. (2015). "Host species composition influences infection severity among amphibians in the absence of spillover transmission." Ecology and Evolution 5(7): 1432-1439.en_US
dc.identifier.issn2045-7758en_US
dc.identifier.issn2045-7758en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111214
dc.description.abstractWildlife epidemiological outcomes can depend strongly on the composition of an ecological community, particularly when multiple host species are affected by the same pathogen. However, the relationship between host species richness and disease risk can vary with community context and with the degree of spillover transmission that occurs among co‐occurring host species. We examined the degree to which host species composition influences infection by Batrachochytrium dendrobatidis (Bd), a widespread fungal pathogen associated with amphibian population declines around the world, and whether transmission occurs from one highly susceptible host species to other co‐occurring host species. By manipulating larval assemblages of three sympatric amphibian species in the laboratory, we characterized the relationship between host species richness and infection severity, whether infection mediates growth and survivorship differently across various combinations of host species, and whether Bd is transmitted from experimentally inoculated tadpoles to uninfected tadpoles. We found evidence of a dilution effect where Bd infection severity was dramatically reduced in the most susceptible of the three host species (Anaxyrus boreas). Infection also mediated survival and growth of all three host species such that the presence of multiple host species had both positive (e.g., infection reduction) and negative (e.g., mortality) effects on focal species. However, we found no evidence that Bd infection is transmitted by this species. While these results demonstrate that host species richness as well as species identity underpin infection dynamics in this system, dilution is not the product of reduced transmission via fewer infectious individuals of a susceptible host species. We discuss various mechanisms, including encounter reduction and antagonistic interactions such as competition and opportunistic cannibalism that may act in concert to mediate patterns of infection severity, growth, and mortality observed in multihost communities.There are many ways in which infection can be influenced by species diversity. Here we show experimentally that the interactions between species in a multi‐host amphibian community drive the severity of infection by the amphibian chytrid fungus. We find no evidence that infection is transmitted between two host species in our study, suggesting that spillover infection is not a cause of dilution effects in this system.en_US
dc.publisherR Foundation for Statistical Computingen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherdisease risken_US
dc.subject.otherdiversity‐diseaseen_US
dc.subject.othertadpoleen_US
dc.subject.othercommunity structureen_US
dc.subject.otherBatrachochytriumen_US
dc.subject.otherchytridiomycosisen_US
dc.subject.otherbiodiversityen_US
dc.subject.otherdilution effecten_US
dc.titleHost species composition influences infection severity among amphibians in the absence of spillover transmissionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111214/1/ece31385.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111214/2/ece31385-sup-0001-FigureS1.pdf
dc.identifier.doi10.1002/ece3.1385en_US
dc.identifier.sourceEcology and Evolutionen_US
dc.identifier.citedreferenceKeesing, F., L. K. Belden, P. Daszak, A. Dobson, C. D. Harvell, R. D. Holt, et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468: 647 – 652.en_US
dc.identifier.citedreferencePark, T. 1948. Interspecies competition in populations of Trilobium confusum Duval and Trilobium castaneum Herbst. Ecol. Monogr. 18: 265 – 307.en_US
dc.identifier.citedreferenceR Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.en_US
dc.identifier.citedreferenceAltig, R., M. R. Whiles, and C. N. Taylor. 2007. What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw. Biol. 52: 386 – 395.en_US
dc.identifier.citedreferenceAltizer, S., C. L. Nunn, P. H. Thrall, J. L. Gittleman, J. Antonovics, A. A. Cunningham, et al. 2003. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst. 34: 517 – 547.en_US
dc.identifier.citedreferenceBehringer, D. C., M. J. Butler, and J. D. Shields. 2006. Avoidance of disease by social lobsters. Nature 441: 421.en_US
dc.identifier.citedreferenceBlaustein, A. R., J. M. Romansic, E. A. Scheessele, B. A. Han, A. P. Pessier, and J. E. Longcore. 2005. Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv. Biol. 19: 1460 – 1468.en_US
dc.identifier.citedreferenceBorer, E., P. R. Hosseini, E. W. Seabloom, and A. P. Dobson. 2007. Pathogen‐induced reversal of native dominance in a grassland community. Proc. Natl Acad. Sci. USA 104: 5473 – 5478.en_US
dc.identifier.citedreferenceBoyle, D. G., D. B. Boyle, V. Olsen, J. A. T. Morgan, and A. D. Hyatt. 2004. Rapid quantitative detection of chytridiomycosis ( Batrachochytrium dendrobatidis ) in amphibian samples using real‐time Taqman PCR assay. Dis. Aquat. Organ. 60: 141 – 148.en_US
dc.identifier.citedreferenceBuck, J. C., L. Truong, and A. R. Blaustein. 2011. Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus? Biodivers. Conserv. 20: 3549 – 3553.en_US
dc.identifier.citedreferenceFisher, M. C., T. W. J. Garner, and S. F. Walker. 2009. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63: 291 – 310.en_US
dc.identifier.citedreferenceGosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183 – 190.en_US
dc.identifier.citedreferenceHan, B. A., P. W. Bradley, and A. R. Blaustein. 2008. Ancient behaviors of larval amphibians in response to an emerging fungal pathogen, Batrachochytrium dendrobatidis. Behav. Ecol. Sociobiol. 63: 241 – 250.en_US
dc.identifier.citedreferenceHan, B. A., C. L. Searle, and A. R. Blaustein. 2011. The effects of an infectious fungal pathogen, Batrachochytrium dendrobatidis, on amphibian predator‐prey interactions. PLoS ONE 6: e16675.en_US
dc.identifier.citedreferenceHatcher, M. J., J. T. A. Dick, and A. M. Dunn. 2006. How parasites affect interactions between competitors and predators. Ecol. Lett. 9: 1253 – 1271.en_US
dc.identifier.citedreferenceJohnson, P. T. J., and D. W. Thieltges. 2010. Diversity, decoys and the dilution effect: host ecological communities affect disease risk. J. Exp. Biol. 213: 961 – 970.en_US
dc.identifier.citedreferenceJoly, D. O., and F. Messier. 2004. The distribution of Echinococcus granulosus in moose: evidence for parasite‐induced vulnerability to predation by wolves? Oecologia 140: 586 – 590.en_US
dc.identifier.citedreferenceKeesing, F., R. D. Holt, and R. S. Ostfeld. 2006. Effects of species diversity on disease risk. Ecol. Lett. 9: 485 – 498.en_US
dc.identifier.citedreferenceOstfeld, R. S., and K. LoGiudice. 2003. Community disassembly, biodiversity loss, and the erosion of an ecosystem service. Ecology 84: 1421 – 1427.en_US
dc.identifier.citedreferenceKiesecker, J. M., and A. R. Blaustein. 1999. Pathogen reverses competition between larval amphibians. Ecology 80: 2442 – 2448.en_US
dc.identifier.citedreferenceKilpatrick, A. M., C. J. Briggs, and P. Daszak. 2009. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol. Evol. 25: 109 – 118.en_US
dc.identifier.citedreferenceOlson, D. H., D. M. Aanensen, K. L. Ronnenberg, C. I. Powell, S. F. Walker, J. Bielby, et al. 2013. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE, 8: e56802.en_US
dc.identifier.citedreferenceOstfeld, R. S., and F. Keesing. 2013. Straw men don't get Lyme disease: response to Wood and Lafferty. Trends Ecol. Evol. 28: 502 – 503.en_US
dc.identifier.citedreferenceSalkeld, D. J., K. A. Padgett, and J. H. Jones. 2013. A meta‐analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16: 679 – 686.en_US
dc.identifier.citedreferenceSearle, C. L., L. M. Biga, J. W. Spatafora, and A. R. Blaustein. 2011a. A dilution effect in the emerging amphibian pathogen Batrachochytrium dendrobatidis. Proc. Natl Acad. Sci. USA 108: 16322 – 16326.en_US
dc.identifier.citedreferenceSearle, C. L., S. S. Gervasi, J. Hua, J. I. Hammond, R. A. Relyea, D. H. Olson, et al. 2011b. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv. Biol. 25: 965 – 974.en_US
dc.identifier.citedreferenceSearle, C. L., J. R. Mendelsen III, L. E. Green, and M. A. Duffy. 2013. Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles. Ecol. Evol. 3: 4129 – 4138.en_US
dc.identifier.citedreferenceVenesky, M. D., X. L. Liu, E. L. Sauer, and J. R. Rohr. 2013. Linking manipulative experiments to field data to test the dilution effect. J. Anim. Ecol. 83: 557 – 565.en_US
dc.identifier.citedreferenceWood, C. L., and K. D. Lafferty. 2013. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol. Evol. 28: 239 – 247.en_US
dc.identifier.citedreferenceParris, M. J., and J. G. Beaudoin. 2004. Chytridiomycosis impacts predator‐prey interactions in larval amphibian communities. Oecologia 140: 626 – 632.en_US
dc.identifier.citedreferenceParris, M. J., and T. O. Cornelius. 2004. Fungal pathogen causes competitive and developmental stress in larval amphibian communities. Ecology 85: 3385 – 3395.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.