Show simple item record

Ion‐Specific Oil Repellency of Polyelectrolyte Multilayers in Water: Molecular Insights into the Hydrophilicity of Charged Surfaces

dc.contributor.authorLiu, Xiaokongen_US
dc.contributor.authorLeng, Chuanen_US
dc.contributor.authorYu, Lien_US
dc.contributor.authorHe, Keen_US
dc.contributor.authorBrown, Lauren Joanen_US
dc.contributor.authorChen, Zhanen_US
dc.contributor.authorCho, Jinhanen_US
dc.contributor.authorWang, Dayangen_US
dc.date.accessioned2015-05-04T20:36:52Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04-13en_US
dc.identifier.citationLiu, Xiaokong; Leng, Chuan; Yu, Li; He, Ke; Brown, Lauren Joan; Chen, Zhan; Cho, Jinhan; Wang, Dayang (2015). "Ion‐Specific Oil Repellency of Polyelectrolyte Multilayers in Water: Molecular Insights into the Hydrophilicity of Charged Surfaces." Angewandte Chemie 127(16): 4933-4938.en_US
dc.identifier.issn0044-8249en_US
dc.identifier.issn1521-3757en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111215
dc.description.abstractSurface wetting on polyelectrolyte multilayers (PEMs), prepared by alternating deposition of polydiallyldimethylammonium chloride (PDDA) and poly(styrene sulfonate) (PSS), was investigated mainly in water‐solid‐oil systems. The surface‐wetting behavior of as‐prepared PEMs was well correlated to the molecular structures of the uncompensated ionic groups on the PEMs as revealed by sum frequency generation vibrational and X‐ray photoelectron spectroscopies. The orientation change of the benzenesulfonate groups on the PSS‐capped surfaces causes poor water wetting in oil or air and negligible oil wetting in water, while the orientation change of the quaternized pyrrolidine rings on the PDDA‐capped surfaces hardly affects their wetting behavior. The underwater oil repellency of PSS‐capped PEMs was successfully harnessed to manufacture highly efficient filters for oil‐water separation at high flux.Ölabweisend: Die Benetzbarkeit geladener Oberflächen korreliert mit der molekularen Natur der ionischen Gruppen. Bei isotroper Konfiguration haben Änderungen in der Orientierung der Gruppen kaum einen Einfluss auf die Wasserbenetzung. Bei anisotroper Konfiguration erfolgt ein Übergang von einer niedrigen Wasserbenetzung in Öl zu einer niedrigen Wasserentnetzung in Wasser, was zu exzellenten ölabweisenden Eigenschaften unter Wasser führt.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherStrukturaufklärungen_US
dc.subject.otherPhotoelektronenspektroskopieen_US
dc.subject.otherÖl‐Wasser‐Trennungen_US
dc.subject.otherOberflächenchemieen_US
dc.subject.otherGrenzflächenen_US
dc.titleIon‐Specific Oil Repellency of Polyelectrolyte Multilayers in Water: Molecular Insights into the Hydrophilicity of Charged Surfacesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationotherIan Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)en_US
dc.contributor.affiliationotherDepartment of Chemical and Biological Engineering, Korea University, Seoul, 136–701 (Korea)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111215/1/ange_201411992_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111215/2/4933_ftp.pdf
dc.identifier.doi10.1002/ange.201411992en_US
dc.identifier.sourceAngewandte Chemieen_US
dc.identifier.citedreferenceNote that the CH 2 moieties of the PDDA backbone should have a small contribution to the CH 2 stretching vibration signal as they may be either shielded by the pyrrolidine ring of the QA + groups or randomly oriented within the surface plane (Figure 4).en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. Israelachvili, H. Wennerstrom, Nature 1996, 379, 219 – 225;en_US
dc.identifier.citedreferenceU. Raviv, S. Giasson, N. Kampf, J.‐F. Gohy, R. Jerome, J. Klein, Nature 2003, 425, 163 – 165.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceK. D. Collins, Biophys. J. 1997, 72, 65 – 76;en_US
dc.identifier.citedreferenceW. Kunz, P. Lo Nostro, B. W. Ninham, Curr. Opin. Colloid Interface Sci. 2002, 7, 81 – 91;en_US
dc.identifier.citedreferenceL. B. Sagle, K. Cimatu, V. A. Litosh, Y. Liu, S. C. Flores, X. Chen, B. Yu, P. S. Cremer, J. Am. Chem. Soc. 2011, 133, 18707 – 18712;en_US
dc.identifier.citedreferenceR. Scheu, Y. Chen, H. B. de Aguiar, B. M. Rankin, D. Ben‐Amotz, S. Roke, J. Am. Chem. Soc. 2014, 136, 2040 – 2047.en_US
dc.identifier.citedreferenceM. Ramiasa, J. Ralston, R. Fetzer, R. Sedev, D. M. Fopp‐Spori, C. Morhard, C. Pacholski, J. P. Spatz, J. Am. Chem. Soc. 2013, 135, 7159 – 7171.en_US
dc.identifier.citedreferenceD. N. Rao, Colloids Surf. A 2002, 206, 203 – 216.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang, Adv. Mater. 2009, 21, 665 – 669;en_US
dc.identifier.citedreferenceY. C. Jung, B. Bhushan, Langmuir 2009, 25, 14165 – 14173.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceMultilayer Thin Films (Eds.: G. Decher, J. Schlenoff ), Wiley‐VCH, Weinheim, 2003;en_US
dc.identifier.citedreferenceJ. F. Quinn, A. P. R. Johnston, G. K. Such, A. N. Zelikin, F. Caruso, Chem. Soc. Rev. 2007, 36, 707 – 718;en_US
dc.identifier.citedreferenceZ. Y. Tang, Y. Wang, P. Podsiadlo, N. A. Kotov, Adv. Mater. 2006, 18, 3203 – 3224;en_US
dc.identifier.citedreferenceJ. Sun, T. Wu, Y. Sun, Z. Wang, X. Zhang, J. Shen, W. Cao, Chem. Commun. 1998, 1853 – 1854.en_US
dc.identifier.citedreferenceR. A. Ghostine, M. Z. Markarian, J. B. Schlenoff, J. Am. Chem. Soc. 2013, 135, 7636 – 7646.en_US
dc.identifier.citedreferenceNote that (PDDA/PSS) 5.5 and (PDDA/PSS) 6.0 were produced by LbL deposition in 0.50  M NaCl, (PDDA/PSS) 9.5 and (PDDA/PSS) 10.0 PEMs in 0.25  M NaCl and (PDDA/PSS) 14.5 and (PDDA/PSS) 15.0 PEMs in 0.10  M NaCl, the thickness and surface roughness of which were comparable to that of (PDDA/PSS) 3.5 and (PDDA/PSS) 4.0 PEMs.en_US
dc.identifier.citedreferenceNote that using the experimental θ w/a  value (52°) of the (PDDA/PSS) 4 PEMs obtained after 72 hours of aging at 60 °C, the θ o/w and θ w/o  values were calculated at 112° and 68°, respectively, by using Equations (1) and (2), and they were still significantly smaller than experimental values.en_US
dc.identifier.citedreferenceZ. Chen, Prog. Polym. Sci. 2010, 35, 1376 – 1402.en_US
dc.identifier.citedreferenceN. Giovambattista, P. G. Debenedetti, P. J. Rossky, J. Phys. Chem. B 2007, 111, 9581 – 9587.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceF. Zhang, Z. Ali, F. Amin, A. Feltz, M. Oheim, W. J. Parak, ChemPhysChem 2010, 11, 730 – 735;en_US
dc.identifier.citedreferenceA. Riedinger, F. Zhang, F. Dommershausen, C. Röcker, S. Brandholt, G. U. Nienhaus, U. Koert, W. J. Parak, Small 2010, 6, 2590 – 2597.en_US
dc.identifier.citedreferenceThe use of different electrolyte and polyelectrolytes for LbL deposition can yield PEMs with different surface morphology, surface charge, and internal structure (Ref [15]). To avoid that technical issue, new electrolytes and polyelelytrolytes were used only for growth of the outmost layers rather than the entire PEMs. (PDDA/PSS) 3.0 and (PDDA/PSS) 3.5 PEMs, obtained in 1.0  M NaCl, were used for deposition of polycations and polyanions in 1.0  M salt, respectively, so the resulting PEMs should be comparable to (PDDA/PSS) 3.5 and (PDDA/PSS) 4.0 PEMs obtained in 1.0  M NaCl in terms of the film thickness and surface morphology and charge.en_US
dc.identifier.citedreferenceR. von Klitzing, Phys. Chem. Chem. Phys. 2006, 8, 5012 – 5033.en_US
dc.identifier.citedreferenceT. Serizawa, S. Hashiguchi, M. Akashi, Langmuir 1999, 15, 5363 – 5368.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. Ulman, Chem. Rev. 1996, 96, 1533 – 1554;en_US
dc.identifier.citedreferenceA. Y. Fadeev, T. J. McCarthy, Langmuir 1999, 15, 3759 – 3766.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.