Show simple item record

The effects of tissue‐non‐specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis

dc.contributor.authorWang, E.en_US
dc.contributor.authorNam, H. K.en_US
dc.contributor.authorLiu, J.en_US
dc.contributor.authorHatch, N. E.en_US
dc.date.accessioned2015-05-04T20:36:53Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationWang, E.; Nam, H. K.; Liu, J.; Hatch, N. E. (2015). "The effects of tissue‐non‐specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosis." Orthodontics & Craniofacial Research : 196-206.en_US
dc.identifier.issn1601-6335en_US
dc.identifier.issn1601-6343en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111219
dc.publisherChapman & Hall/CRCen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othermouse modelen_US
dc.subject.otherboneen_US
dc.subject.othercraniofacialen_US
dc.subject.othercraniosynostosisen_US
dc.subject.othermineralizationen_US
dc.titleThe effects of tissue‐non‐specific alkaline phosphatase gene therapy on craniosynostosis and craniofacial morphology in the FGFR2C342Y/+ mouse model of Crouzon craniosynostosisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111219/1/ocr12080.pdf
dc.identifier.doi10.1111/ocr.12080en_US
dc.identifier.sourceOrthodontics & Craniofacial Researchen_US
dc.identifier.citedreferenceWhyte MP. Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci 2010; 1192: 190 – 200.en_US
dc.identifier.citedreferenceJohnson K, Moffa A, Chen Y, Pritzker K, Goding J, Terkeltaub R. Matrix vesicle plasma cell membrane glycoprotein‐1 regulates mineralization by murine osteoblastic MC3T3 cells. J Bone Miner Res 1999; 14: 883 – 92.en_US
dc.identifier.citedreferenceJohnson KA, Hessle L, Vaingankar S, Wennberg C, Mauro S, Narisawa S et al. Osteoblast tissue‐nonspecific alkaline phosphatase antagonizes and regulates PC‐1. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1365 – 77.en_US
dc.identifier.citedreferenceHessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW et al. Tissue‐nonspecific alkaline phosphatase and plasma cell membrane glycoprotein‐1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci 2002; 99: 9445 – 9.en_US
dc.identifier.citedreferenceRegister TC, Wuthier RE. Effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle‐enriched fractions and by hydroxyapatite. Bone 1985; 6: 307 – 12.en_US
dc.identifier.citedreferenceJohnson K, Pritzker K, Goding J, Terkeltaub R. The nucleoside triphosphate pyrophosphohydrolase isozyme PC‐1 directly promotes cartilage calcification through chondrocyte apoptosis and increased calcium precipitation by mineralizing vesicles. J Rheumatol 2001; 8: 2681 – 91.en_US
dc.identifier.citedreferenceJohnson K, Goding J, VanEtten D, Sali A, Hu S, Farley D et al. Linked deficiencies in extracellular PPi and osteopontin mediate pathologic calcification associated with defective PC‐1 and ANK expression. J Bone Min Res 2003; 1: 994 – 1004.en_US
dc.identifier.citedreferenceThouverey C, Bechkoff G, Pikula S, Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 2009; 17: 64 – 72.en_US
dc.identifier.citedreferenceBeck GR Jr, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 2000; 97: 8352 – 7.en_US
dc.identifier.citedreferencePolewski MD, Johnson KA, Foster M, Millán JL, Terkeltaub R. Inorganic pyrophosphatase induces type I collagen in osteoblasts. Bone 2010; 46: 81 – 90.en_US
dc.identifier.citedreferenceNam HK, Liu J, Li Y, Kragor A, Hatch NE. Ectonucleotide pyrophosphatase/phosphodiesterase‐1 (ENPP1) protein regulates osteoblast differentiation. J Biol Chem 2011; 286: 39059 – 71.en_US
dc.identifier.citedreferenceCollmann H, Mornet E, Gattenlöhner S, Beck C, Girschick H. Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst 2009; 25: 217 – 23.en_US
dc.identifier.citedreferenceMornet E. Hypophosphatasia. Orphanet J Rare Dis 2007; 2: 40.en_US
dc.identifier.citedreferenceWhyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D et al. Enzyme‐replacement therapy in life‐threatening hypophosphatasia. N Engl J Med 2012; 366: 904 – 13.en_US
dc.identifier.citedreferenceHatch NE, Nociti F, Swanson E, Bothwell M, Somerman M. FGF2 alters expression of the pyrophosphate/phosphate regulating proteins, PC‐1, ANK and TNAP, in the calvarial osteoblastic cell line, MC3T3E1(C4). Connect Tissue Res 2005; 46 ( 4–5 ): 184 – 92.en_US
dc.identifier.citedreferenceHatch NE, Li Y, Franceschi RT. FGF2 stimulation of the pyrophosphate‐generating enzyme, PC‐1, in pre‐osteoblast cells is mediated by RUNX2. J Bone Miner Res 2009; 24: 652 – 62.en_US
dc.identifier.citedreferenceYamamoto S, Orimo H, Matsumoto T, Iijima O, Narisawa S, Maeda T et al. Prolonged survival and phenotypic correction of Akp2(‐/‐) hypophosphatasia mice by lentiviral gene therapy. J Bone Miner Res 2011; 26: 135 – 42.en_US
dc.identifier.citedreferenceNishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PL et al. Enhancement of drug delivery to bone: characterization of human tissue‐nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 2006; 88: 244 – 55.en_US
dc.identifier.citedreferenceRichtsmeier JT, Baxter LL, Reeves RH. Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice. Dev Dyn 2000; 217: 137 – 45.en_US
dc.identifier.citedreferenceLele S, Richtsmeier JT. An Invariant Approach to Statistical Analysis of Shapes. Boca Raton, FL: Chapman & Hall/CRC; 2001.en_US
dc.identifier.citedreferenceMillan JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P et al. Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 2008; 23: 777 – 87.en_US
dc.identifier.citedreferenceYadav MC, Lemire I, Leonard P, Boileau G, Blond L, Beliveau M et al. Dose response of bone‐targeted enzyme replacement for murine hypophosphatasia. Bone 2011; 49: 250 – 6.en_US
dc.identifier.citedreferenceRasmussen SA, Yazdy MM, Frías JL, Honein MA. Priorities for public health research on craniosynostosis: summary and recommendations from a Centers for Disease Control and Prevention‐sponsored meeting. Am J Med Genet A 2008; 146A: 149 – 58.en_US
dc.identifier.citedreferenceBaird LC, Gonda D, Cohen SR, Evers LH, Lefloch N, Levy ML et al. Craniofacial reconstruction as a treatment for elevated intracranial pressure. Childs Nerv Syst 2011; 28: 411 – 18.en_US
dc.identifier.citedreferenceWarren SM, Proctor MR, Bartlett SP, Blount JP, Buchman SR, Burnett W et al. Parameters of care for craniosynostosis: craniofacial and neurologic surgery perspectives. Plast Reconstr Surg 2012; 129: 731 – 7.en_US
dc.identifier.citedreferenceHatch NE. FGF signaling in craniofacial biological control and pathological craniofacial development. Crit Rev Eukaryot Gene Expr 2010; 20: 295 – 311.en_US
dc.identifier.citedreferenceEswarakumar VP, Horowitz MC, Locklin R, Morriss‐Kay GM, Lonai P. A gain‐of‐function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc Natl Acad Sci USA 2004; 101: 12555 – 60.en_US
dc.identifier.citedreferencePerlyn CA, DeLeon VB, Babbs C, Govier D, Burell L, Darvann T et al. The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three‐dimensional MicroCT. Cleft Palate Craniofac J 2006; 43: 740.en_US
dc.identifier.citedreferenceLiu J, Nam HK, Wang E, Hatch NE. Further analysis of the Crouzon mouse: effects of the FGFR2(C342Y) mutation are cranial bone‐dependent. Calcif Tissue Int 2013; 92: 451 – 66.en_US
dc.identifier.citedreferenceChen L, Li D, Li C, Engel A, Deng CX. A Ser252Trp [corrected] substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis. Bone 2003; 33: 169 – 78.en_US
dc.identifier.citedreferenceYin L, Du X, Li C, Xu X, Chen Z, Su N et al. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone 2008; 42: 631 – 43.en_US
dc.identifier.citedreferenceTwigg SR, Healy C, Babbs C, Sharpe JA, Wood WG, Sharpe PT et al. Skeletal analysis of the Fgfr 3(P244R) mouse, a genetic model for the Muenke craniosynostosis syndrome. Dev Dyn 2009; 238: 331 – 42.en_US
dc.identifier.citedreferenceMurshed M, Harmery D, Millan JL, McKee MD, Karsenty G. Unique coexpression I osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 2009; 19: 1093 – 104.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.