Show simple item record

Postmidnight depletion of the high‐energy tail of the quiet plasmasphere

dc.contributor.authorSarno‐smith, Lois K.en_US
dc.contributor.authorLiemohn, Michael W.en_US
dc.contributor.authorKatus, Roxanne M.en_US
dc.contributor.authorSkoug, Ruth M.en_US
dc.contributor.authorLarsen, Brian A.en_US
dc.contributor.authorThomsen, Michelle F.en_US
dc.contributor.authorWygant, John R.en_US
dc.contributor.authorMoldwin, Mark B.en_US
dc.date.accessioned2015-05-04T20:36:57Z
dc.date.available2016-05-10T20:26:29Zen
dc.date.issued2015-03en_US
dc.identifier.citationSarno‐smith, Lois K. ; Liemohn, Michael W.; Katus, Roxanne M.; Skoug, Ruth M.; Larsen, Brian A.; Thomsen, Michelle F.; Wygant, John R.; Moldwin, Mark B. (2015). "Postmidnight depletion of the highâ energy tail of the quiet plasmasphere." Journal of Geophysical Research: Space Physics 120(3): 1646-1660.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111226
dc.description.abstractThe Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures the high‐energy tail of the thermal plasmasphere allowing study of topside ionosphere and inner magnetosphere coupling. We statistically analyze a 22 month period of HOPE data, looking at quiet times with a Kp index of less than 3. We investigate the high‐energy range of the plasmasphere, which consists of ions at energies between 1 and 10 eV and contains approximately 5% of total plasmaspheric density. Both the fluxes and partial plasma densities over this energy range show H+ is depleted the most in the postmidnight sector (1–4 magnetic local time), followed by O+ and then He+. The relative depletion of each species across the postmidnight sector is not ordered by mass, which reveals ionospheric influence. We compare our results with keV energy electron data from HOPE and the Van Allen Probes Electric Fields and Waves instrument spacecraft potential to rule out spacecraft charging. Our conclusion is that the postmidnight ion disappearance is due to diurnal ionospheric temperature variation and charge exchange processes.Key PointsOne to ten eV ion depletion in quiet time postmidnight sectorDepletion varies by ion species not ordered by massStrong diurnal variation in high‐energy tail of plasmasphereen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherion compositionen_US
dc.subject.otherionosphereen_US
dc.subject.otherpostmidnighten_US
dc.subject.otherplasmasphereen_US
dc.subject.otherquiet time magnetosphereen_US
dc.titlePostmidnight depletion of the high‐energy tail of the quiet plasmasphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111226/1/jgra51633.pdf
dc.identifier.doi10.1002/2014JA020682en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceOzhogin, P., J. Tu, P. Song, and B. Reinisch ( 2012 ), Field‐aligned distribution of the plasmaspheric electron density: An empirical model derived from the IMAGE RPI measurements, J. Geophys. Res., 117, A06225, doi: 10.1029/2011JA017330.en_US
dc.identifier.citedreferenceMauk, B., N. J. Fox, S. Kanekal, R. Kessel, D. Sibeck, and A. Ukhorskiy ( 2014 ), Science objectives and rationale for the radiation belt storm probes mission, in The Van Allen Probes Mission, edited by N. Fox and J. L. Burch, pp. 3 – 27, Springer, New Yorken_US
dc.identifier.citedreferenceMayaud, P.‐N. ( 1980 ), Derivation, Meaning, and Use of Geomagnetic Indices, vol. 22, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceMizera, P., and G. Boyd ( 1982 ), A summary of spacecraft charging results, J. Spacecraft Rockets, 20 ( 5 ), 438 – 443.en_US
dc.identifier.citedreferenceMoldwin, M. B., L. Downward, H. Rassoul, R. Amin, and R. Anderson ( 2002 ), A new model of the location of the plasmapause: CRRES results, J. Geophys. Res., 107 ( A11 ), 1339, doi: 10.1029/2001JA009211.en_US
dc.identifier.citedreferenceNewell, P. T., W. J. Burke, C.‐I. Meng, E. R. Sanchez, and M. E. Greenspan ( 1991 ), Identification and observations of the plasma mantle at low altitude, J. Geophys. Res., 96 ( A1 ), 35 – 45.en_US
dc.identifier.citedreferenceOlson, W. P., and K. A. Pfitzer ( 1977 ), Magnetospheric magnetic field modeling, Annual Scientific Report AFOSR Contract No F44620‐75‐c‐0033, McDonnell Douglas Astronautics, Huntington Beach, Calif.en_US
dc.identifier.citedreferencePierrard, V., J. Goldstein, N. André, V. Jordanova, G. Kotova, J. Lemaire, M. Liemohn, and H. Matsui ( 2009 ), Recent progress in physics‐based models of the plasmasphere, Space Sci. Rev., 145 ( 1–2 ), 193 – 229.en_US
dc.identifier.citedreferencePark, C. ( 1970 ), Whistler observations of the interchange of ionization between the ionosphere and the protonosphere, J. Geophys. Res., 75 ( 22 ), 4249 – 4260.en_US
dc.identifier.citedreferencePavlov, A., and N. Pavlova ( 2005 ), Mechanism of the post‐midnight winter night‐time enhancements in N m F 2 over Millstone Hill during 14–17 January 1986, J. Atmos. Sol. Terr. Phys., 67 ( 4 ), 381 – 395.en_US
dc.identifier.citedreferenceReeves, G., et al. ( 2013 ), Electron acceleration in the heart of the Van Allen radiation belts, Science, 341 ( 6149 ), 991 – 994.en_US
dc.identifier.citedreferenceReinisch, B., et al. ( 2001 ), First results from the radio plasma imager on IMAGE, Geophys. Res. Lett., 28 ( 6 ), 1167 – 1170.en_US
dc.identifier.citedreferenceReinisch, B. W., et al. ( 2000 ), The radio plasma imager investigation on the IMAGE spacecraft, in The IMAGE Mission, edited by J. L. Burch, pp. 319 – 359, Springer, Netherlandsen_US
dc.identifier.citedreferenceReme, H., et al. ( 2001 ), First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster Ion Spectrometry (CIS) experiment, Ann. Geophys., 19, 1303 – 1354.en_US
dc.identifier.citedreferenceRichards, P. G., and D. G. Torr ( 1985 ), Seasonal, diurnal, and solar cyclical variations of the limiting H+ flux in the Earth's topside ionosphere, J. Geophys. Res., 90 ( A6 ), 5261 – 5268.en_US
dc.identifier.citedreferenceRoble, R. ( 1975 ), The calculated and observed diurnal variation of the ionosphere over Millstone Hill on 23–24 March 1970, Planet. Space Sci., 23 ( 7 ), 1017 – 1033.en_US
dc.identifier.citedreferenceSandel, B. R., et al. ( 2000 ), The extreme ultraviolet imager investigation for the IMAGE mission, Space Sci. Rev., 91, 197 – 242.en_US
dc.identifier.citedreferenceSandel, B. R., R. A. King, W. Forrester, D. L. Gallagher, A. L. Broadfoot, and C. Curtis ( 2001 ), Initial results from the IMAGE extreme ultraviolet imager, Geophys. Res. Lett., 28 ( 8 ), 1439 – 1442.en_US
dc.identifier.citedreferenceSchunk, R., and A. F. Nagy ( 1978 ), Electron temperatures in the F region of the ionosphere: Theory and observations, Rev. Geophys., 16 ( 3 ), 355 – 399.en_US
dc.identifier.citedreferenceSheeley, B., M. Moldwin, H. Rassoul, and R. Anderson ( 2001 ), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106 ( A11 ), 25,631 – 25,641.en_US
dc.identifier.citedreferenceSingh, U., and R. Singh ( 1997 ), Study of plasmasphere‐ionosphere coupling fluxes, J. Atmos. Sol. Terr. Phys., 59 ( 11 ), 1321 – 1327.en_US
dc.identifier.citedreferenceSpasojević, M., H. Frey, M. Thomsen, S. Fuselier, S. Gary, B. Sandel, and U. Inan ( 2004 ), The link between a detached subauroral proton arc and a plasmaspheric plume, Geophys. Res. Lett., 31, L04803, doi: 10.1029/2003GL018389.en_US
dc.identifier.citedreferenceThomsen, M. ( 2004 ), Why Kp is such a good measure of magnetospheric convection, Space Weather, 2, S11004, doi: 10.1029/2004SW000089.en_US
dc.identifier.citedreferenceUsanova, M., et al. ( 2014 ), Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground‐based and Van Allen Probes observations, Geophys. Res. Lett., 41, 1375 – 1381, doi: 10.1002/2013GL059024.en_US
dc.identifier.citedreferenceWeiss, L., R. Lambour, R. Elphic, and M. Thomsen ( 1997 ), Study of plasmaspheric evolution using geosynchronous observations and global modeling, Geophys. Res. Lett., 24, 599 – 602, doi: 10.1029/97GL00351.en_US
dc.identifier.citedreferenceWinningham, J., J. Burch, N. Eaker, V. Blevins, and R. Hoffman ( 1981 ), The Low Altitude Plasma Instrument/LAPI, Space Sci. Instrum., 5, 465 – 475.en_US
dc.identifier.citedreferenceWygant, J., et al. ( 2014 ), The electric field and waves instruments on the radiation belt storm probes mission, in The Van Allen Probes Mission, edited by N. Fox and J. L. Burch, pp. 183 – 220, Springer, New Yorken_US
dc.identifier.citedreferenceBaker, D., et al. ( 2013 ), A long‐lived relativistic electron storage ring embedded in Earth's outer Van Allen belt, Science, 340 ( 6129 ), 186 – 190.en_US
dc.identifier.citedreferenceBurch, J., J. Winningham, V. Blevins, N. Eaker, W. Gibson, and R. Hoffman ( 1981 ), High‐altitude plasma instrument for Dynamics Explorer‐A, Space Sci. Instrum., 5, 455 – 463.en_US
dc.identifier.citedreferenceBurch, J., P. Reiff, R. Heelis, J. Winningham, W. Hanson, C. Gurgiolo, J. Menietti, R. Hoffman, and J. Barfield ( 1982 ), Plasma injection and transport in the mid‐altitude polar cusp, Geophys. Res. Lett., 9 ( 9 ), 921 – 924.en_US
dc.identifier.citedreferenceBurch, J., et al. ( 2001 ), Views of Earth's magnetosphere with the IMAGE satellite, Science, 291 ( 5504 ), 619 – 624.en_US
dc.identifier.citedreferenceCarpenter, D., and R. Anderson ( 1992 ), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97 ( A2 ), 1097 – 1108.en_US
dc.identifier.citedreferenceCarpenter, D., F. Walter, R. Barrington, and D. McEwen ( 1968 ), Alouette 1 and 2 observations of abrupt changes in whistler rate and of VLF noise variations at the plasmapause—A satellite‐ground study, J. Geophys. Res., 73 ( 9 ), 2929 – 2940.en_US
dc.identifier.citedreferenceCarpenter, D., C. Park, H. Taylor, and H. Brinton ( 1969 ), Multi‐experiment detection of the plasmapause from EOGO satellites and Antarctic ground stations, J. Geophys. Res., 74 ( 7 ), 1837 – 1847.en_US
dc.identifier.citedreferenceCarpenter, D., T. Bell, U. Inan, R. Benson, V. Sonwalkar, B. Reinisch, and D. Gallagher ( 2003 ), Z‐mode sounding within propagation “cavities” and other inner magnetospheric regions by the RPI instrument on the IMAGE satellite, J. Geophys. Res., 108 ( A12 ), 1421, doi: 10.1029/2003JA010025.en_US
dc.identifier.citedreferenceCarpenter, D. L., and J. Lemaire ( 1997 ), Erosion and recovery of the plasmasphere in the plasmapause region, Space Sci. Rev., 80 ( 1–2 ), 153 – 179.en_US
dc.identifier.citedreferenceCarpenter, D. L., R. Anderson, W. Calvert, and M. Moldwin ( 2000 ), CRRES observations of density cavities inside the plasmasphere, J. Geophys. Res., 105 ( A10 ), 23,323 – 23,338.en_US
dc.identifier.citedreferenceCarpenter, D. L., M. Spasojević, T. F. Bell, U. S. Inan, B. W. Reinisch, I. Galkin, R. F. Benson, J. Green, S. F. Fung, and S. Boardsen ( 2002 ), Small‐scale field‐aligned plasmaspheric density structures inferred from the radio plasma imager on IMAGE, J. Geophys. Res., 107 ( A9 ), 1258, doi: 10.1029/2001JA009199.en_US
dc.identifier.citedreferenceChandler, M., and C. Chappell ( 1986 ), Observations of the flow of H + and He+ along magnetic field lines in the plasmasphere, J. Geophys. Res., 91 ( A8 ), 8847 – 8860.en_US
dc.identifier.citedreferenceChappell, C. ( 1972 ), Recent satellite measurements of the morphology and dynamics of the plasmasphere, Rev. Geophys., 10 ( 4 ), 951 – 979.en_US
dc.identifier.citedreferenceChappell, C., S. Fields, C. Baugher, J. Hoffman, W. Hanson, W. Wright, H. Hammack, G. Carignan, and A. Nagy ( 1981 ), The retarding ion mass spectrometer on Dynamics Explorer‐A, Space Sci. Instrum., 1, 477 – 491.en_US
dc.identifier.citedreferenceChappell, C., T. Moore, and J. Waite ( 1987 ), The ionosphere as a fully adequate source of plasma for the Earth's magnetosphere, J. Geophys. Res., 92 ( A6 ), 5896 – 5910.en_US
dc.identifier.citedreferenceChappell, C., M. Huddleston, T. Moore, B. Giles, and D. Delcourt ( 2008 ), Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere, J. Geophys. Res., 113, A09206, doi: 10.1029/2007JA012945.en_US
dc.identifier.citedreferenceComfort, R. H., J. H. Waite, and C. R. Chappell ( 1985 ), Thermal ion temperatures from the retarding ion mass spectrometer on DE‐1, J. Geophys. Res., 90 ( A4 ), 3475 – 3486, doi: 10.1029/JA090iA04p03475.en_US
dc.identifier.citedreferenceDarrouzet, F., et al. ( 2009 ), Plasmaspheric density structures and dynamics: Properties observed by the Cluster and IMAGE missions, in The Earth's Plasmasphere, edited by F. Darrouzet, J. De Keyser, and V. Pierrard, pp. 55 – 106, Springer, New Yorken_US
dc.identifier.citedreferenceDécréau, P., P. Fergeau, V. Krannosels' kikh, M. Lévêque, P. Martin, O. Randriamboarison, F. Sené, J. Trotignon, P. Canu, and P. Mögensen ( 1997 ), WHISPER, a resonance sounder and wave analyser: Performances and perspectives for the Cluster mission, Space Sci. Rev., 79 ( 1–2 ), 157 – 193.en_US
dc.identifier.citedreferenceDenton, R., Y. Wang, P. Webb, P. Tengdin, J. Goldstein, J. Redfern, and B. Reinisch ( 2012 ), Magnetospheric electron density long‐term (> 1 day) refilling rates inferred from passive radio emissions measured by IMAGE RPI during geomagnetically quiet times, J. Geophys. Res., 117, A03221, doi: 10.1029/2011JA017274.en_US
dc.identifier.citedreferenceEscoubet, C., M. Fehringer, and M. Goldstein ( 1999 ), Introduction the Cluster mission, Ann. Geophys., 19, 1197 – 1200, Copernicus GmbH.en_US
dc.identifier.citedreferenceEscoubet, C., M. Taylor, A. Masson, H. Laakso, J. Volpp, M. Hapgood, and M. Goldstein ( 2013 ), Dynamical processes in space: Cluster results, Ann. Geophys., 31, 1045 – 1059.en_US
dc.identifier.citedreferenceFu, H., J. Tu, J. Cao, P. Song, B. Reinisch, D. Gallagher, and B. Yang ( 2010 ), IMAGE and DMSP observations of a density trough inside the plasmasphere, J. Geophys. Res., 115, A07227, doi: 10.1029/2009JA015104.en_US
dc.identifier.citedreferenceFunsten, H., et al. ( 2013 ), Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the radiation belt storm probes mission, Space Sci. Rev., 179 ( 1–4 ), 423 – 484, doi: 10.1007/s11214-013-9968-7.en_US
dc.identifier.citedreferenceGallagher, D., P. Craven, and R. Comfort ( 1988 ), An empirical model of the Earth's plasmasphere, Adv. Space Res., 8 ( 8 ), 15 – 24.en_US
dc.identifier.citedreferenceGallagher, D. L., P. D. Craven, and R. H. Comfort ( 2000 ), Global core plasma model, J. Geophys. Res., 105 ( A8 ), 18,819 – 18,833.en_US
dc.identifier.citedreferenceGalvan, D. A., M. B. Moldwin, and B. R. Sandel ( 2008 ), Diurnal variation in plasmaspheric He + inferred from extreme ultraviolet images, J. Geophys. Res., 113, A09216, doi: 10.1029/2007JA013013.en_US
dc.identifier.citedreferenceGanguli, G., M. A. Reynolds, and M. W. Liemohn ( 2000 ), The plasmasphere and advances in plasma spheric research, J. Atmos. Sol. Terr. Phys., 62 ( 17 ), 1647 – 1657.en_US
dc.identifier.citedreferenceGarrett, H. B. ( 1981 ), The charging of spacecraft surfaces, Rev. Geophys., 19 ( 4 ), 577 – 616.en_US
dc.identifier.citedreferenceGoldstein, J., S. De Pascuale, C. Kletzing, W. Kurth, K. J. Genestreti, R. M. Skoug, B. A. Larsen, L. M. Kistler, C. Mouikis, and H. Spence ( 2014 ), Simulation of Van Allen Probes plasmapause encounters, J. Geophys. Res. Space Physics, 119, 7464 – 7484, doi: 10.1002/2014JA020252.en_US
dc.identifier.citedreferenceGuiter, S., and T. Gombosi ( 1990 ), The role of high‐speed plasma flows in plasmaspheric refilling, J. Geophys. Res., 95 ( A7 ), 10,427 – 10,440.en_US
dc.identifier.citedreferenceGuiter, S., T. I. Gombosi, and C. Rasmussen ( 1995 ), Two‐stream modeling of plasmaspheric refilling, J. Geophys. Res., 100 ( A6 ), 9519 – 9526.en_US
dc.identifier.citedreferenceGurgiolo, C., B. Sandel, J. Perez, D. Mitchell, C. Pollock, and B. Larsen ( 2005 ), Overlap of the plasmasphere and ring current: Relation to subauroral ionospheric heating, J. Geophys. Res., 110, A12217, doi: 10.1029/2004JA010986.en_US
dc.identifier.citedreferenceHeelis, R. A., J. K. Lowell, and R. W. Spiro ( 1982 ), A model of the high‐latitude ionospheric convection pattern, J. Geophys. Res., 87 ( A8 ), 6339 – 6345.en_US
dc.identifier.citedreferenceHo, M. C., and D. R. Moorcroft ( 1971 ), Hydrogen density and proton flux in the topside ionosphere over Arecibo, Puerto Rico, from incoherent scatter observations, Planet. Space Sci., 19 ( 11 ), 1441 – 1455.en_US
dc.identifier.citedreferenceHorwitz, J. ( 1987 ), Core plasma in the magnetosphere, Rev. Geophys., 25 ( A2 ), 579 – 587.en_US
dc.identifier.citedreferenceHorwitz, J., R. Comfort, and C. Chappell ( 1990 ), A statistical characterization of plasmasphere density structure and boundary locations, J. Geophys. Res., 95 ( A6 ), 7937 – 7947.en_US
dc.identifier.citedreferenceInan, U. S., and T. F. Bell ( 1977 ), The plasmapause as a VLF wave guide, J. Geophys. Res., 82 ( 19 ), 2819 – 2827.en_US
dc.identifier.citedreferenceJohnson, M., and J. Kierein ( 1992 ), Combined Release and Radiation Effects Satellite (CRRES): Spacecraft and mission, J. Spacecraft Rockets, 29 ( 4 ), 556 – 563.en_US
dc.identifier.citedreferenceJordanova, V., Y. Yu, J. Niehof, R. Skoug, G. Reeves, C. Kletzing, J. Fennell, and H. Spence ( 2014 ), Simulations of inner magnetosphere dynamics with an expanded RAM‐SCB model and comparisons with Van Allen Probes observations, Geophys. Res. Lett., 41, 2687 – 2694, doi: 10.1002/2014GL059533.en_US
dc.identifier.citedreferenceKirby, K., et al. ( 2014 ), Radiation belt storm probes observatory and environments, in The Van Allen Probes Mission, edited by N. Fox and J. L. Burch, pp. 59 – 125, Springer, New Yorken_US
dc.identifier.citedreferenceKletzing, C., et al. ( 2014 ), The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP, in The Van Allen Probes Mission, edited by N. Fox and J. L. Burch, pp. 127 – 181, Springer, New Yorken_US
dc.identifier.citedreferenceKotova, G., V. Bezrukikh, M. Verigin, and L. Lezhen ( 2002 ), Temperature and density variations in the dusk and dawn plasmasphere as observed by interball tail in 1999–2000, Adv. Space Res., 30 ( 7 ), 1831 – 1834.en_US
dc.identifier.citedreferenceKozyra, J., L. Brace, T. Cravens, and A. Nagy ( 1986 ), A statistical study of the subauroral electron temperature enhancement using Dynamics Explorer 2 Langmuir probe observations, J. Geophys. Res., 91 ( A10 ), 11,270 – 11,280.en_US
dc.identifier.citedreferenceLanzerotti, L. J. ( 2013 ), Van Allen Probes mission, Space Weather, 11, 133 – 133, doi: 10.1002/swe.20037.en_US
dc.identifier.citedreferenceLi, W., et al. ( 2013 ), An unusual enhancement of low‐frequency plasmaspheric hiss in the outer plasmasphere associated with substorm‐injected electrons, Geophys. Res. Lett., 40, 3798 – 3803, doi: 10.1002/grl.50787.en_US
dc.identifier.citedreferenceLiemohn, M., G. Khazanov, T. Moore, and S. Guiter ( 1997 ), Self‐consistent superthermal electron effects on plasmaspheric refilling, J. Geophys. Res., 102 ( A4 ), 7523 – 7536.en_US
dc.identifier.citedreferenceLiemohn, M., G. Khazanov, P. Craven, and J. Kozyra ( 1999 ), Nonlinear kinetic modeling of early stage plasmaspheric refilling, J. Geophys. Res., 104 ( A5 ), 10,295 – 10,306.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.