Show simple item record

Diversity regulation at macro‐scales: species richness on oceanic archipelagos

dc.contributor.authorTriantis, Kostas A.en_US
dc.contributor.authorEconomo, Evan P.en_US
dc.contributor.authorGuilhaumon, Françoisen_US
dc.contributor.authorRicklefs, Robert E.en_US
dc.date.accessioned2015-05-04T20:36:59Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05en_US
dc.identifier.citationTriantis, Kostas A.; Economo, Evan P.; Guilhaumon, François ; Ricklefs, Robert E. (2015). "Diversity regulation at macroâ scales: species richness on oceanic archipelagos." Global Ecology and Biogeography (5): 594-605.en_US
dc.identifier.issn1466-822Xen_US
dc.identifier.issn1466-8238en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111231
dc.description.abstractAimUnderstanding the mechanisms that generate diversity patterns requires analyses at spatial and temporal scales that are appropriate to the dispersal capacities and ecological requirements of organisms. Oceanic archipelagos provide a range of island sizes and configurations which should predictably influence colonization, diversification and extinction. To explore the influence of these factors on archipelagic diversity, we relate the numbers of native and endemic species of vascular plants, birds, land snails and spiders – taxa having different dispersal capabilities and population densities – to the number and sizes of islands in the major oceanic archipelagos of the globe.LocationFourteen major oceanic archipelagos of the globe.MethodsSpecies richness was collated for native and endemic species in each archipelago. We used linear mixed effect models to quantify the influence on diversity of total area, number of islands, isolation and latitude. We then applied process‐based modelling in a Bayesian framework to evaluate how speciation, colonization and extinction are influenced by characteristics of archipelagos associated with species richness, i.e. area, isolation and number of islands.ResultsWe found parallel scaling of species richness among taxa with respect to total area and number of islands across groups. The process‐based model supported effects of isolation on colonization and of area and number of islands on extinction rates, with the scaling exponents mostly similar across taxa. Data are consistent with a range of scaling exponents for speciation rate, implying that those relationships are difficult to infer from the data used.ConclusionsWe demonstrate an unexpected parallel scaling of species richness of four taxa with area and number of islands for the major oceanic archipelagos of the globe. We infer that this scaling arises through similar effects of the physical characteristics of archipelagos on extinction, colonization and speciation rates across these disparate taxa, indicating that similar mechanisms have created variation in diversity.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringer‐Verlagen_US
dc.subject.otherspeciationen_US
dc.subject.otherspecies–area relationshipen_US
dc.subject.otherAnagenesisen_US
dc.subject.otherBayesian inferenceen_US
dc.subject.othercolonizationen_US
dc.subject.othercladogenesisen_US
dc.subject.otherextinctionen_US
dc.subject.otherlinear mixed effect modelsen_US
dc.subject.othermacroecologyen_US
dc.subject.otherscaleen_US
dc.titleDiversity regulation at macro‐scales: species richness on oceanic archipelagosen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111231/1/geb12301.pdf
dc.identifier.doi10.1111/geb.12301en_US
dc.identifier.sourceGlobal Ecology and Biogeographyen_US
dc.identifier.citedreferenceRicklefs, R.E. ( 1987 ) Community diversity: relative roles of local and regional processes. Science, 235, 167 – 171.en_US
dc.identifier.citedreferenceKisel, Y., McInnes, L., Toomey, N.H. & Orme, C.D.L. ( 2011 ) How diversification rates and diversity limits combine to create large‐scale species–area relationships. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2514 – 2525.en_US
dc.identifier.citedreferenceKvålseth, T.O. ( 1985 ) Cautionary note about R 2. American Statistician, 39, 279 – 285.en_US
dc.identifier.citedreferenceLosos, J.B. & Schluter, D. ( 2000 ) Analysis of an evolutionary species–area relationship. Nature, 408, 847 – 850.en_US
dc.identifier.citedreferenceÖckinger, E., Schweiger, O., Crist, T.O., Debinski, D.M., Krauss, J., Kuussaari, M., Petersen, J.D., Pöyry, J., Settele, J., Summerville, K.S. & Bommarco, R. ( 2010 ) Life‐history traits predict species responses to habitat area and isolation: a cross‐continental synthesis. Ecology Letters, 13, 969 – 979.en_US
dc.identifier.citedreferenceOlson, S.L. & James, H.F. ( 1984 ) The role of Polynesians in the extinction of the avifauna of the Hawaiian Islands. Quaternary extinctions: a prehistoric revolution (ed. by P.S. Martin and R.G. Klein ), pp. 768 – 780. University of Arizona Press, Tucson, AZ.en_US
dc.identifier.citedreferencePatiño, J., Weigelt, P., Guilhaumon, F., Kreft, H., Triantis, K.A., Naranjo‐Cigala, A., Sólymos, P. & Vanderpoorten, A. ( 2014 ) Differences in species–area relationships among the major lineages of land plants: a macroecological perspective. Global Ecology and Biogeography, 23, 1275 – 1283.en_US
dc.identifier.citedreferencePhillimore, A.B. & Price, T.D. ( 2008 ) Density‐dependent cladogenesis in birds. PLoS Biology, 6, e71.en_US
dc.identifier.citedreferencePigolotti, S. & Cencini, M. ( 2009 ) Speciation‐rate dependence in species–area relationships. Journal of Theoretical Biology, 260, 83 – 89.en_US
dc.identifier.citedreferencePrice, J.P. & Clague, D.A. ( 2002 ) How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence. Proceedings of the Royal Society B: Biological Sciences, 269, 2429 – 2435.en_US
dc.identifier.citedreferenceRabosky, D.L. ( 2009 ) Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters, 12, 735 – 743.en_US
dc.identifier.citedreferenceRabosky, D.L. ( 2013 ) Diversity‐dependence, ecological speciation, and the role of competition in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 44, 481 – 502.en_US
dc.identifier.citedreferenceRabosky, D.L. & Glor, R.E. ( 2010 ) Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proceedings of the National Academy of Sciences USA, 51, 22178 – 22183.en_US
dc.identifier.citedreferenceRahbek, C. ( 2005 ) The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology Letters, 8, 224 – 239.en_US
dc.identifier.citedreferenceRicklefs, R.E. ( 2004 ) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1 – 15.en_US
dc.identifier.citedreferenceRicklefs, R.E. ( 2007 ) History and diversity: explorations at the intersection of ecology and evolution. The American Naturalist, 170, S56 – S70.en_US
dc.identifier.citedreferenceRicklefs, R.E. & Bermingham, E. ( 2007 ) Evolutionary radiations of passerine birds in archipelagoes. The American Naturalist, 169, 285 – 297.en_US
dc.identifier.citedreferenceRosenzweig, M.L. ( 1995 ) Species diversity in space and time. Cambridge University Press, New York.en_US
dc.identifier.citedreferenceRosindell, J. & Phillimore, A.B. ( 2011 ) A unified model of island biogeography sheds light on the zone of radiation. Ecology Letters, 14, 552 – 560.en_US
dc.identifier.citedreferenceSánchez‐Marco, A. ( 2010 ) New data and an overview of the past avifaunas from the Canary Islands. Ardeola, 57, 13 – 40.en_US
dc.identifier.citedreferenceSteadman, D.W. ( 2006 ) Extinction and biogeography of tropical Pacific birds. University Chicago Press, Chicago.en_US
dc.identifier.citedreferenceStuessy, T.F., Jakubowsky, G., Salguero Gómez, R., Pfosser, M., Schlüter, P.M., Fer, T., Sun, B.‐Y. & Kato, H. ( 2006 ) Anagenetic evolution in island plants. Journal of Biogeography, 33, 1259 – 1265.en_US
dc.identifier.citedreferenceTriantis, K.A., Mylonas, M. & Whittaker, R.J. ( 2008 ) Evolutionary species–area curves as revealed by single‐island endemics: insights for the interprovincial species–area relationship. Ecography, 31, 401 – 407.en_US
dc.identifier.citedreferenceTriantis, K.A., Guilhaumon, F. & Whittaker, R.J. ( 2012 ) The island species–area relationship: biology and statistics. Journal of Biogeography, 39, 215 – 232.en_US
dc.identifier.citedreferenceValente, L.M., Etienne, R.S. & Phillimore, A.B. ( 2014 ) The effects of island ontogeny on species diversity and phylogeny. Proceedings of the Royal Society B: Biological Sciences, 281, 20133227.en_US
dc.identifier.citedreferenceWeigelt, P., Jetz, W. & Kreft, H. ( 2013 ) Bioclimatic and physical characterization of the world's islands. Proceedings of the National Academy of Sciences USA, 110, 15307 – 15312.en_US
dc.identifier.citedreferenceWhittaker, R.J. & Fernández‐Palacios, J.M. ( 2007 ) Island biogeography: ecology, evolution, and conservation, 2nd edn. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceWhittaker, R.J., Triantis, K.A. & Ladle, R.J. ( 2008 ) A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 35, 977 – 994.en_US
dc.identifier.citedreferenceZuur, A., Ieno, E.N., Walker, N., Saveiliev, A.A. & Smith, G.M. ( 2009 ) Mixed effects models and extensions in ecology with R. Springer, New York.en_US
dc.identifier.citedreferenceMacArthur, R.H. ( 1972 ) Geographical ecology. Harper and Rowe, New York.en_US
dc.identifier.citedreferenceMacArthur, R.H. & Wilson, E.O. ( 1967 ) The theory of island biogeography. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceBrown, J.H., Ernest, S.K.M., Parody, J.M. & Haskell, J.P. ( 2001 ) Regulation of diversity: maintenance of species richness in changing environments. Oecologia, 126, 321 – 332.en_US
dc.identifier.citedreferenceBunnefeld, N. & Phillimore, A.B. ( 2012 ) Island, archipelago and taxon effects: mixed models as a means of dealing with the imperfect design of nature's experiments. Ecography, 35, 15 – 22.en_US
dc.identifier.citedreferenceBurnham, K.P. & Anderson, D.R. ( 2002 ) Model selection and inference: a practical information‐theoretic approach. Springer‐Verlag, New York.en_US
dc.identifier.citedreferenceCabral, J.S., Weigelt, P., Kissling, W.D. & Kreft, H. ( 2014 ) Biogeographic, climatic and spatial drivers differentially affect alpha, beta and gamma diversities on oceanic archipelagos. Proceedings of the Royal Society B: Biological Sciences, 281, 20133246.en_US
dc.identifier.citedreferenceCadena, C.D., Ricklefs, R.E., Jiménez, I. & Bermingham, E. ( 2005 ) Is speciation driven by species diversity? Nature, 438, E1 – E2.en_US
dc.identifier.citedreferenceCameron, R.A.D., Triantis, K.A., Parent, C.E., Guilhaumon, F., Alonso, M.R., Ibanez, M., Martins, A.M.F., Ladle, R.J. & Whittaker, R.J. ( 2013 ) Snails on oceanic islands: testing the general dynamic model of oceanic island biogeography using linear mixed effect models. Journal of Biogeography, 40, 117 – 130.en_US
dc.identifier.citedreferenceCarracedo, J.C. & Tilling, R.I. ( 2003 ) Geología y volcanología de islas oceánicas. Canarias – Hawai. Caja Canarias, Gobierno de Canarias, Santa Cruz de Tenerife.en_US
dc.identifier.citedreferenceChen, X. & He, F. ( 2009 ) Speciation and endemism under the model of island biogeography. Ecology, 90, 39 – 45.en_US
dc.identifier.citedreferenceCornell, H.V. ( 2013 ) Is regional species diversity bounded or unbounded? Biological Reviews, 88, 140 – 165.en_US
dc.identifier.citedreferenceEconomo, E.P., Klimov, P., Sarnat, E., Guénard, B., Lecroq, B. & Knowles, L.L. ( 2015 ) Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proceedings of the Royal Society B: Biological Sciences, 282, 20141416.en_US
dc.identifier.citedreferenceGillespie, R.G. & Clague, D. (eds) ( 2009 ) Encyclopedia of islands. University California Press, Berkeley, CA.en_US
dc.identifier.citedreferenceGivnish, T.J., Millam, K.C., Mast, A.R., Paterson, T.B., Theim, T.J., Hipp, A.L., Henss, J.M., Smith, J.F., Wood, K.R. & Sytsma, K.J. ( 2009 ) Origin, adaptive radiation, and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proceedings of the Royal Society B: Biological Sciences, 276, 407 – 416.en_US
dc.identifier.citedreferenceGrant, P.R. & Grant, B.R. ( 2008 ) How and why species multiply: the radiation of Darwin's Finches. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceGravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. ( 2011 ) Trophic theory of island biogeography. Ecology Letters, 14, 1010 – 1016.en_US
dc.identifier.citedreferenceHaario, H., Laine, M., Mira, A. & Saksman, E. ( 2006 ) DRAM: efficient adaptive MCMC. Statistical Computing, 16, 339 – 354.en_US
dc.identifier.citedreferenceHanski, I. ( 1999 ) Metapopulation ecology. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceHeaney, L.R. ( 2000 ) Dynamic disequilibrium: a long‐term, large‐scale perspective on the equilibrium model of island biogeography. Global Ecology and Biogeography, 9, 59 – 74.en_US
dc.identifier.citedreferenceHutchinson, G.E. ( 1959 ) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145 – 159.en_US
dc.identifier.citedreferenceKisel, Y. & Barraclough, T.G. ( 2010 ) Speciation has a spatial scale that depends on levels of gene flow. The American Naturalist, 175, 316 – 334.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.