Show simple item record

Consequence of the tumor‐associated conversion to cyclin D1b

dc.contributor.authorAugello, Michael Aen_US
dc.contributor.authorBerman‐booty, Lisa Den_US
dc.contributor.authorCarr, Richarden_US
dc.contributor.authorYoshida, Akihiroen_US
dc.contributor.authorDean, Jeffry Len_US
dc.contributor.authorSchiewer, Matthew Jen_US
dc.contributor.authorFeng, Felix Yen_US
dc.contributor.authorTomlins, Scott Aen_US
dc.contributor.authorGao, Erheen_US
dc.contributor.authorKoch, Walter Jen_US
dc.contributor.authorBenovic, Jeffrey Len_US
dc.contributor.authorDiehl, John Alanen_US
dc.contributor.authorKnudsen, Karen Een_US
dc.date.accessioned2015-05-04T20:37:07Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05en_US
dc.identifier.citationAugello, Michael A; Berman‐booty, Lisa D ; Carr, Richard; Yoshida, Akihiro; Dean, Jeffry L; Schiewer, Matthew J; Feng, Felix Y; Tomlins, Scott A; Gao, Erhe; Koch, Walter J; Benovic, Jeffrey L; Diehl, John Alan; Knudsen, Karen E (2015). "Consequence of the tumorâ associated conversion to cyclin D1b." EMBO Molecular Medicine 7(5): 628-647.en_US
dc.identifier.issn1757-4676en_US
dc.identifier.issn1757-4684en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111250
dc.description.abstractClinical evidence suggests that cyclin D1b, a variant of cyclin D1, is associated with tumor progression and poor outcome. However, the underlying molecular basis was unknown. Here, novel models were created to generate a genetic switch from cyclin D1 to cyclin D1b. Extensive analyses uncovered overlapping but non‐redundant functions of cyclin D1b compared to cyclin D1 on developmental phenotypes, and illustrated the importance of the transcriptional regulatory functions of cyclin D1b in vivo. Data obtained identify cyclin D1b as an oncogene, wherein cyclin D1b expression under the endogenous promoter induced cellular transformation and further cooperated with known oncogenes to promote tumor growth in vivo. Further molecular interrogation uncovered unexpected links between cyclin D1b and the DNA damage/PARP1 regulatory networks, which could be exploited to suppress cyclin D1b‐driven tumors. Collectively, these data are the first to define the consequence of cyclin D1b expression on normal cellular function, present evidence for cyclin D1b as an oncogene, and provide pre‐clinical evidence of effective methods to thwart growth of cells dependent upon this oncogenic variant.SynopsisNovel murine models were generated that mimic tumour‐associated conversion to cyclin D1b and novel links uncovered between cyclin D1b expression and high PARP activity and genome instability markers, which could be exploited to inhibit tumour growth.Novel murine models were generated that mimic the tumor‐associated conversion to cyclin D1b.Induction of cyclin D1b phenocopies some but not all phenotypes observed upon cyclin D1 loss.Unlike cells expressing full‐length cyclin D1, cells expressing endogenous cyclin D1b undergo transformation, thus demonstrating the unique transforming capacity of this cyclin D1 variant.Cyclin D1b induces evidence of DNA damage and promotes PARP1 activity, linking the DNA damage pathway to cyclin D1b‐mediated oncogenic events.Novel means to suppress growth of cyclin D1b‐positive tumor cells were identified, providing the first preclinical insight into means by which to target tumors reliant on cyclin D1b expression.Novel murine models were generated that mimic tumour‐associated conversion to cyclin D1b and novel links uncovered between cyclin D1b expression and high PARP activity and genome instability markers, which could be exploited to inhibit tumour growth.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othercell cycleen_US
dc.subject.othercyclinen_US
dc.subject.othercyclin D1ben_US
dc.subject.otherPARPen_US
dc.titleConsequence of the tumor‐associated conversion to cyclin D1ben_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111250/1/emmm201404242.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111250/2/emmm201404242.reviewer_comments.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111250/3/emmm201404242-sup-0001-FigS1-S6.pdf
dc.identifier.doi10.15252/emmm.201404242en_US
dc.identifier.sourceEMBO Molecular Medicineen_US
dc.identifier.citedreferenceMusgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL ( 2011 ) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11: 558 – 572.en_US
dc.identifier.citedreferenceLi W, Sanki A, Karim RZ, Thompson JF, Soon Lee C, Zhuang L, McCarthy SW, Scolyer RA ( 2006 ) The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology 38: 287 – 301en_US
dc.identifier.citedreferenceLi R, An SJ, Chen ZH, Zhang GC, Zhu JQ, Nie Q, Xie Z, Guo AL, Mok TS, Wu YL ( 2008 ) Expression of cyclin D1 splice variants is differentially associated with outcome in non‐small cell lung cancer patients. Hum Pathol 39: 1792 – 1801en_US
dc.identifier.citedreferenceLu F, Gladden AB, Diehl JA ( 2003 ) An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res 63: 7056 – 7061en_US
dc.identifier.citedreferenceZwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ ( 1997 ) CDK‐independent activation of estrogen receptor by cyclin D1. Cell 88: 405 – 415en_US
dc.identifier.citedreferenceLundgren K, Brown M, Pineda S, Cuzick J, Salter J, Zabaglo L, Howell A, Dowsett M, Landberg G ( 2012 ) Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study. Breast Cancer Res 14: R57en_US
dc.identifier.citedreferenceLuo X, Kraus WL ( 2012 ) On PAR with PARP: cellular stress signaling through poly(ADP‐ribose) and PARP‐1. Genes Dev 26: 417 – 432en_US
dc.identifier.citedreferenceMalumbres M, Barbacid M ( 2009 ) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9: 153 – 166en_US
dc.identifier.citedreferenceMcMahon C, Suthiphongchai T, DiRenzo J, Ewen ME ( 1999 ) P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc Natl Acad Sci USA 96: 5382 – 5387en_US
dc.identifier.citedreferenceMillar EK, Dean JL, McNeil CM, O'Toole SA, Henshall SM, Tran T, Lin J, Quong A, Comstock CE, Witkiewicz A et al ( 2009 ) Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome. Oncogene 28: 1812 – 1820en_US
dc.identifier.citedreferenceMoreno‐Bueno G, Rodriguez‐Perales S, Sanchez‐Estevez C, Hardisson D, Sarrio D, Prat J, Cigudosa JC, Matias‐Guiu X, Palacios J ( 2003 ) Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene 22: 6115 – 6118en_US
dc.identifier.citedreferencede Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M et al ( 2004 ) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7: 663 – 676en_US
dc.identifier.citedreferencePeeper DS, Shvarts A, Brummelkamp T, Douma S, Koh EY, Daley GQ, Bernards R ( 2002 ) A functional screen identifies hDRIL1 as an oncogene that rescues RAS‐induced senescence. Nat Cell Biol 4: 148 – 153en_US
dc.identifier.citedreferencePetre‐Draviam CE, Cook SL, Burd CJ, Marshall TW, Wetherill YB, Knudsen KE ( 2003 ) Specificity of cyclin D1 for androgen receptor regulation. Cancer Res 63: 4903 – 4913en_US
dc.identifier.citedreferencePetre‐Draviam CE, Williams EB, Burd CJ, Gladden A, Moghadam H, Meller J, Diehl JA, Knudsen KE ( 2005 ) A central domain of cyclin D1 mediates nuclear receptor corepressor activity. Oncogene 24: 431 – 444en_US
dc.identifier.citedreferencePowers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG ( 2004 ) E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2: 203 – 214en_US
dc.identifier.citedreferenceRajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP ( 2009 ) SIRT1 promotes cell survival under stress by deacetylation‐dependent deactivation of poly(ADP‐ribose) polymerase 1. Mol Cell Biol 29: 4116 – 4129en_US
dc.identifier.citedreferenceRudas M, Lehnert M, Huynh A, Jakesz R, Singer C, Lax S, Schippinger W, Dietze O, Greil R, Stiglbauer W et al ( 2008 ) Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen‐based therapy. Clin Cancer Res 14: 1767 – 1774en_US
dc.identifier.citedreferenceSandhu SK, Yap TA, de Bono JS ( 2010 ) Poly(ADP‐ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 46: 9 – 20en_US
dc.identifier.citedreferenceSchiewer MJ, Den R, Hoang DT, Augello MA, Lawrence YR, Dicker AP, Knudsen KE ( 2012a ) mTOR is a selective effector of the radiation therapy response in androgen receptor‐positive prostate cancer. Endocr Relat Cancer 19: 1 – 12en_US
dc.identifier.citedreferenceSchiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM et al ( 2012b ) Dual roles of PARP‐1 promote cancer growth and progression. Cancer Discov 2: 1134 – 1149en_US
dc.identifier.citedreferenceSchiewer MJ, Morey LM, Burd CJ, Liu Y, Merry DE, Ho SM, Knudsen KE ( 2009 ) Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer. Oncogene 28: 1016 – 1027en_US
dc.identifier.citedreferenceSchiewer MJ, Knudsen KE ( 2014 ) Transcriptional roles of PARP1 in cancer. Mol Cancer Res 12: 1069 – 1080en_US
dc.identifier.citedreferenceSicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA ( 1995 ) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621 – 630en_US
dc.identifier.citedreferenceSicinski P, Weinberg RA ( 1997 ) A specific role for cyclin D1 in mammary gland development. J Mammary Gland Biol Neoplasia 2: 335 – 342en_US
dc.identifier.citedreferenceSolomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, Senderowicz AM, Conti CJ, Knudsen ES ( 2003 ) Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem 278: 30339 – 30347en_US
dc.identifier.citedreferenceThomas GR, Nadiminti H, Regalado J ( 2005 ) Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int J Exp Pathol 86: 347 – 363en_US
dc.identifier.citedreferenceWang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV ( 1994 ) Mammary hyperplasia and carcinoma in MMTV‐cyclin D1 transgenic mice. Nature 369: 669 – 671en_US
dc.identifier.citedreferenceWang Y, Dean JL, Millar EK, Tran TH, McNeil CM, Burd CJ, Henshall SM, Utama FE, Witkiewicz A, Rui H et al ( 2008 ) Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res 68: 5628 – 5638en_US
dc.identifier.citedreferenceWeyemi U, Lagente‐Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B, Talbot M, Dardalhon M, Al GA, Bidart JM et al ( 2012 ) ROS‐generating NADPH oxidase NOX4 is a critical mediator in oncogenic H‐Ras‐induced DNA damage and subsequent senescence. Oncogene 31: 1117 – 1129en_US
dc.identifier.citedreferenceAggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, Nuskey B, Goradia A, Wasik MA, Klein‐Szanto AJ, Rustgi AK et al ( 2007 ) Nuclear accumulation of cyclin D1 during S phase inhibits Cul4‐dependent Cdt1 proteolysis and triggers p53‐dependent DNA rereplication. Genes Dev 21: 2908 – 2922en_US
dc.identifier.citedreferenceArnold A, Papanikolaou A ( 2005 ) Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 23: 4215 – 4224en_US
dc.identifier.citedreferenceAugello MA, Burd CJ, Birbe R, McNair C, Ertel A, Magee MS, Frigo DE, Wilder‐Romans K, Shilkrut M, Han S et al ( 2014 ) Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes. J Clin Invest 123: 493 – 508en_US
dc.identifier.citedreferenceBenzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG, Klein PS, Rustgi A, Diehl JA ( 2006 ) Identification of mutations that disrupt phosphorylation‐dependent nuclear export of cyclin D1. Oncogene 25: 6291 – 6303en_US
dc.identifier.citedreferenceBertoni F, Rinaldi A, Zucca E, Cavalli F ( 2006 ) Update on the molecular biology of mantle cell lymphoma. Hematol Oncol 24: 22 – 27en_US
dc.identifier.citedreferenceBienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, Frampton GM, Cole MF, Odom DT, Odajima J et al ( 2010 ) Transcriptional role of cyclin D1 in development revealed by a genetic‐proteomic screen. Nature 463: 374 – 378en_US
dc.identifier.citedreferenceBigoni R, Negrini M, Veronese ML, Cuneo A, Castoldi GL, Croce CM ( 1996 ) Characterization of t(11;14) translocation in mantle cell lymphoma by fluorescent in situ hybridization. Oncogene 13: 797 – 802en_US
dc.identifier.citedreferenceBosch F, Jares P, Campo E, Lopez‐Guillermo A, Piris MA, Villamor N, Tassies D, Jaffe ES, Montserrat E, Rozman C et al ( 1994 ) PRAD‐1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 84: 2726 – 2732en_US
dc.identifier.citedreferenceBourgo RJ, Thangavel C, Ertel A, Bergseid J, McClendon AK, Wilkens L, Witkiewicz AK, Wang JY, Knudsen ES ( 2011 ) RB restricts DNA damage‐initiated tumorigenesis through an LXCXE‐dependent mechanism of transcriptional control. Mol Cell 43: 663 – 672en_US
dc.identifier.citedreferenceBrenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J et al ( 2011 ) Mechanistic rationale for inhibition of poly(ADP‐ribose) polymerase in ETS gene fusion‐positive prostate cancer. Cancer Cell 19: 664 – 678en_US
dc.identifier.citedreferenceBurd CJ, Petre CE, Moghadam H, Wilson EM, Knudsen KE ( 2005 ) Cyclin D1 binding to the androgen receptor (AR) NH2‐terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol Endocrinol 19: 607 – 620en_US
dc.identifier.citedreferenceCarrere N, Belaud‐Rotureau MA, Dubus P, Parrens M, de Mascarel A, Merlio JP ( 2005 ) The relative levels of cyclin D1a and D1b alternative transcripts in mantle cell lymphoma may depend more on sample origin than on CCND1 polymorphism. Haematologica 90: 854 – 856en_US
dc.identifier.citedreferenceCasimiro MC, Crosariol M, Loro E, Ertel A, Yu Z, Dampier W, Saria EA, Papanikolaou A, Stanek TJ, Li Z et al ( 2012 ) ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Invest 122: 833 – 843en_US
dc.identifier.citedreferenceComstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, Tindall EA, Wang Y, Burd CJ, Groh EM et al ( 2009 ) Cyclin D1 splice variants: polymorphism, risk, and isoform‐specific regulation in prostate cancer. Clin Cancer Res 15: 5338 – 5349en_US
dc.identifier.citedreferenceComstock CE, Augello MA, Schiewer MJ, Karch J, Burd CJ, Ertel A, Knudsen ES, Jessen WJ, Aronow BJ, Knudsen KE ( 2011 ) Cyclin D1 is a selective modifier of androgen‐dependent signaling and androgen receptor function. J Biol Chem 286: 8117 – 8127en_US
dc.identifier.citedreferenceComstock CE, Augello MA, Goodwin JF, de LR, Schiewer MJ, Ostrander WF Jr, Burkhart RA, McClendon AK, McCue PA, Trabulsi EJ et al ( 2013 ) Targeting cell cycle and hormone receptor pathways in cancer. Oncogene 32: 5481 – 5491en_US
dc.identifier.citedreferenceDean JL, Thangavel C, McClendon AK, Reed CA, Knudsen ES ( 2010 ) Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene 29: 4018 – 4032en_US
dc.identifier.citedreferenceDo K, Chen AP ( 2013 ) Molecular pathways: targeting PARP in cancer treatment. Clin Cancer Res 19: 977 – 984en_US
dc.identifier.citedreferenceFong PC, Yap TA, Boss DS, Carden CP, Mergui‐Roelvink M, Gourley C, De GJ, Lubinski J, Shanley S, Messiou C et al ( 2010 ) Poly(ADP)‐ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum‐free interval. J Clin Oncol 28: 2512 – 2519en_US
dc.identifier.citedreferenceFu M, Rao M, Bouras T, Wang C, Wu K, Zhang X, Li Z, Yao TP, Pestell RG ( 2005 ) Cyclin D1 inhibits peroxisome proliferator‐activated receptor gamma‐mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280: 16934 – 16941en_US
dc.identifier.citedreferenceGao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ ( 2010 ) A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 107: 1445 – 1453en_US
dc.identifier.citedreferenceGarcea G, Neal CP, Pattenden CJ, Steward WP, Berry DP ( 2005 ) Molecular prognostic markers in pancreatic cancer: a systematic review. Eur J Cancer 41: 2213 – 2236en_US
dc.identifier.citedreferenceGautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J ( 2007 ) Cyclin D1 in non‐small cell lung cancer: a key driver of malignant transformation. Lung Cancer 55: 1 – 14en_US
dc.identifier.citedreferenceGladden AB, Woolery R, Aggarwal P, Wasik MA, Diehl JA ( 2006 ) Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B‐cell lymphoma. Oncogene 25: 998 – 1007en_US
dc.identifier.citedreferenceGoodwin JF, Schiewer MJ, Dean JL, Schrecengost RS, de LR, Han S, Ma T, Den RB, Dicker AP, Feng FY et al ( 2013 ) A hormone‐DNA repair circuit governs the response to genotoxic insult. Cancer Discov 3: 1254 – 1271en_US
dc.identifier.citedreferenceHorton JK, Wilson SH ( 2013 ) Predicting enhanced cell killing through PARP inhibition. Mol Cancer Res 11: 13 – 18en_US
dc.identifier.citedreferenceHorton JK, Stefanick DF, Prasad R, Gassman NR, Kedar PS, Wilson SH ( 2014 ) Base excision repair defects invoke hypersensitivity to PARP inhibition. Mol Cancer Res 12: 1128 – 1139en_US
dc.identifier.citedreferenceJirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, Zagozdzon A, Goswami T, Wang YE, Clark AB et al ( 2011 ) A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474: 230 – 234en_US
dc.identifier.citedreferenceKedar PS, Stefanick DF, Horton JK, Wilson SH ( 2012 ) Increased PARP‐1 association with DNA in alkylation damaged, PARP‐inhibited mouse fibroblasts. Mol Cancer Res 10: 360 – 368en_US
dc.identifier.citedreferenceKnudsen KE, Arden KC, Cavenee WK ( 1998 ) Multiple G1 regulatory elements control the androgen‐dependent proliferation of prostatic carcinoma cells. J Biol Chem 273: 20213 – 20222en_US
dc.identifier.citedreferenceKnudsen KE, Cavenee WK, Arden KC ( 1999 ) D‐type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 59: 2297 – 2301en_US
dc.identifier.citedreferenceKnudsen KE ( 2006 ) The cyclin D1b splice variant: an old oncogene learns new tricks. Cell Div 1: 15en_US
dc.identifier.citedreferenceKoh DW, Dawson TM, Dawson VL ( 2005 ) Mediation of cell death by poly(ADP‐ribose) polymerase‐1. Pharmacol Res 52: 5 – 14en_US
dc.identifier.citedreferenceLandis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW ( 2006 ) Cyclin D1‐dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9: 13 – 22en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.