Show simple item record

Carbon Nanoelectronic Heterodyne Sensors : A New Paradigm for Chemical and Biological Detection.

dc.contributor.authorKulkarni, Girish Shrinivasen_US
dc.date.accessioned2015-05-14T16:26:00Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-05-14T16:26:00Z
dc.date.issued2015en_US
dc.date.submitted2014en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111436
dc.description.abstractIn 1959, in his famous talk ‘There is plenty of room at the bottom’, physicist Richard Feynman had envisaged a new era of science where one could build electronic systems which would sense and interact with a world only a few atoms in size. To build such systems we not only need new materials but also new transduction strategies. The hunt for new materials has led us back to carbon, a material known since antiquity. Carbon nanotube and graphene-two allotropes of carbon, possess structural, electronic, optical and mechanical properties perfect for building fast, robust and sensitive nano-systems. However, the available sensing technologies are still incapable of high fidelity detection critical for studying nanoscale events in complex environments like ligand-receptor binding, molecular adsorption/desorption, π-π stacking, catalysis, etc. In this thesis, I first introduce a fundamentally new nanoelectronic sensing technology based on heterodyne mixing to investigate the interaction between charge density fluctuations in a nanoelectronic sensor caused by oscillating dipole moment of molecule and an alternating current drive voltage which excites it. By detecting molecular dipole instead of associated charge, we address the limitations of conventional charge-detection based nanoelectronic sensing techniques. In particular, using a carbon nanotube heterodyne platform, I demonstrate for the first time, biological detection in high ionic background solutions where conventional charge-detection based techniques fail due to fundamental Debye screening effect. Next, we report the first graphene nanoelectronic heterodyne vapor sensors which can detect a plethora of vapor molecules with high speed (~ 0.1 second) and high sensitivity (< 1 part per billion) simultaneously; recording orders-of-magnitude improvement over existing nanoelectronic sensors which suffer from fundamental speed-sensitivity tradeoff issue. Finally, we use heterodyne detection as a probe to quantify the fundamental non-covalent binding interaction between small molecules and graphene by analyzing the real-time molecular desorption kinetics. More importantly, we demonstrate for the first time, electrical tuning of molecule-graphene binding kinetics by electrostatic control of graphene work function signifying the ability to tailor chemical interactions on-demand. Our work not only lays a foundation for next-generation of rapid and sensitive nanoelectronic detectors, but also provides an insight into the fundamental molecule-nanomaterial interaction.en_US
dc.language.isoen_USen_US
dc.subjectCarbon nanotubesen_US
dc.subjectGrapheneen_US
dc.subjectHeterodyne sensorsen_US
dc.subjectChemical and biological detectionen_US
dc.titleCarbon Nanoelectronic Heterodyne Sensors : A New Paradigm for Chemical and Biological Detection.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberZhong, Zhaohuien_US
dc.contributor.committeememberFan, Xudongen_US
dc.contributor.committeememberGianchandani, Yogesh B.en_US
dc.contributor.committeememberGuo, L. Jayen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111436/1/girishsk_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.