Show simple item record

Fast Variance Prediction for Iteratively Reconstructed CT with Applications to Tube Current Modulation.

dc.contributor.authorSchmitt, Stephenen_US
dc.date.accessioned2015-05-14T16:26:17Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-05-14T16:26:17Z
dc.date.issued2015en_US
dc.date.submitted2015en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111463
dc.description.abstractX-ray computed tomography (CT) is an important, widely-used medical imaging modality. A primary concern with the increasing use of CT is the ionizing radiation dose incurred by the patient. Statistical reconstruction methods are able to improve noise and resolution in CT images compared to traditional filter backprojection (FBP) based reconstruction methods, which allows for a reduced radiation dose. Compared to FBP-based methods, statistical reconstruction requires greater computational time and the statistical properties of resulting images are more difficult to analyze. Statistical reconstruction has parameters that must be correctly chosen to produce high-quality images. The variance of the reconstructed image has been used to choose these parameters, but this has previously been very time-consuming to compute. In this work, we use approximations to the local frequency response (LFR) of CT projection and backprojection to predict the variance of statistically reconstructed CT images. Compared to the empirical variance derived from multiple simulated reconstruction realizations, our method is as accurate as the currently available methods of variance prediction while being computable for thousands of voxels per second, faster than these previous methods by a factor of over ten thousand. We also compare our method to empirical variance maps produced from an ensemble of reconstructions from real sinogram data. The LFR can also be used to predict the power spectrum of the noise and the local frequency response of the reconstruction. Tube current modulation (TCM), the redistribution of X-ray dose in CT between different views of a patient, has been demonstrated to reduce dose when the modulation is well-designed. TCM methods currently in use were designed assuming FBP-based image reconstruction. We use our LFR approximation to derive fast methods for predicting the SNR of linear observers of a statistically reconstructed CT image. Using these fast observability and variance prediction methods, we derive TCM methods specific to statistical reconstruction that, in theory, potentially reduce radiation dose by 20% compared to FBP-specific TCM methods.en_US
dc.language.isoen_USen_US
dc.subjectComputed Tomographyen_US
dc.subjectIterative Reconstructionen_US
dc.subjectTube Current Modulationen_US
dc.subjectVariance Predictionen_US
dc.titleFast Variance Prediction for Iteratively Reconstructed CT with Applications to Tube Current Modulation.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systemsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberFessler, Jeffrey A.en_US
dc.contributor.committeememberGoodsitt, Mitchell M.en_US
dc.contributor.committeememberGilbert, Anna Catherineen_US
dc.contributor.committeememberScott, Clayton D.en_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111463/1/smschm_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.