Show simple item record

Optimization of Signal-to-Noise Ratio in Semiconductor Sensors via On-Chip Signal Amplification and Interface-Induced Noise Suppression.

dc.contributor.authorKang, Tae Hoonen_US
dc.date.accessioned2015-05-14T16:26:34Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-05-14T16:26:34Z
dc.date.issued2015en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111488
dc.description.abstractRadiation detectors are now used in a large variety of fields in science and technology, and the number of applications is growing continually. This thesis presents the development of a wide band-gap solid state photomultiplier (SSPM) and the performance improvement of Si radiation detector with respect to noise suppression and resolution enhancement. Recently developed advanced scintillators, which have the ability to distinguish gamma-ray interaction events from those that accompany neutron impact, require improved quantum efficiency in the blue or near UV region of the spectrum. We utilize AlGaAs photodiode elements as components in a wide band-gap SSPM as a lower-cost, lower logistical burden and higher quantum efficiency replacement for the photomultiplier tube (PMT). We demonstrate that the diodes are responsive to blue and near UV in both linear and breakdown modes with robust electrical characteristics, which includes the leakage current and the onset of breakdown against geometric alteration in the diode design. For semiconductor direct-conversion radiation detectors, we investigated the performance enhancement of the detector via the suppression of noise induced from the semiconductor interface and the resolution improvement with on-chip amplification. The properties of the phonon-based noise are studied and methods to quench the charge mobility fluctuation via surface control, evaluating acoustic reflectance at the semiconductor metal interface by calculating reflectance coefficient via the roaming phonon microgradient (RPMG) model. Si radiation detectors are fabricated and the hypotheses evaluated with different geometries and metal types. In addition to the noise suppression, we also sought to increase the device signal by integrating an amplifying junction as part of the detector topology so that the SNR could be maximized. From this research, we demonstrated the feasibility of improving the energy resolution relative to those low-noise designs that don’t possess on-chip amplification by modeling, fabricating, and characterizing proof-of-concept planar and partitioned detectors. From the fabricated detectors, a semi-empirical result shows that the energy resolution for 81 keV gamma-rays can be reduced from 2.12 % to 0.96 % (for a k = 0.2) with a gain of ~8, which shows the best SNR optimization from our modeling.en_US
dc.language.isoen_USen_US
dc.subjectPhotodiode SSPM detector APD noise suppression APaD radiationen_US
dc.titleOptimization of Signal-to-Noise Ratio in Semiconductor Sensors via On-Chip Signal Amplification and Interface-Induced Noise Suppression.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberHammig, Mark Daviden_US
dc.contributor.committeememberPhillips, Jamie Deanen_US
dc.contributor.committeememberWehe, David K.en_US
dc.contributor.committeememberGuo, L. Jayen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111488/1/thnkang_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.