Show simple item record

Emergence of Spatio-Temporal Pattern Formation and Information Processing in the Brain.

dc.contributor.authorShtrahman, Elizabeth A.en_US
dc.date.accessioned2015-05-14T16:26:37Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-05-14T16:26:37Z
dc.date.issued2015en_US
dc.date.submitted2015en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111493
dc.description.abstractThe spatio-temporal patterns of neuronal activity are thought to underlie cognitive functions, such as our thoughts, perceptions, and emotions. Neurons and glial cells, specifically astrocytes, are interconnected in complex networks, where large-scale dynamical patterns emerge from local chemical and electrical signaling between individual network components. How these emergent patterns form and encode for information is the focus of this dissertation. I investigate how various mechanisms that can coordinate collections of neurons in their patterns of activity can potentially cause the interactions across spatial and temporal scales, which are necessary for emergent macroscopic phenomena to arise. My work explores the coordination of network dynamics through pattern formation and synchrony in both experiments and simulations. I concentrate on two potential mechanisms: astrocyte signaling and neuronal resonance properties. Due to their ability to modulate neurons, we investigate the role of astrocytic networks as a potential source for coordinating neuronal assemblies. In cultured networks, I image patterns of calcium signaling between astrocytes, and reproduce observed properties of the network calcium patterning and perturbations with a simple model that incorporates the mechanisms of astrocyte communication. Understanding the modes of communication in astrocyte networks and how they form spatial temporal patterns of their calcium dynamics is important to understanding their interaction with neuronal networks. We investigate this interaction between networks and how glial cells modulate neuronal dynamics through microelectrode array measurements of neuronal network dynamics. We quantify the spontaneous electrical activity patterns of neurons and show the effect of glia on the neuronal dynamics and synchrony. Through a computational approach I investigate an entirely different theoretical mechanism for coordinating ensembles of neurons. I show in a computational model how biophysical resonance shifts in individual neurons can interact with the network topology to influence pattern formation and separation. I show that sub-threshold neuronal depolarization, potentially from astrocytic modulation among other sources, can shift neurons into and out of resonance with specific bands of existing extracellular oscillations. This can act as a dynamic readout mechanism during information storage and retrieval. Exploring these mechanisms that facilitate emergence are necessary for understanding information processing in the brain.en_US
dc.language.isoen_USen_US
dc.subjectNeuronal and Astrocyte Networksen_US
dc.titleEmergence of Spatio-Temporal Pattern Formation and Information Processing in the Brain.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineApplied Physicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberZochowski, Michal R.en_US
dc.contributor.committeememberBooth, Victoriaen_US
dc.contributor.committeememberAton, Sara Joen_US
dc.contributor.committeememberOgilvie, Jennifer P.en_US
dc.contributor.committeememberSteel, Duncan G.en_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111493/1/lshtrah_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.