Show simple item record

Ultra Low Power Analog Circuits for Wireless Sensor Node System.

dc.contributor.authorYoon, Dongminen_US
dc.date.accessioned2015-05-14T16:30:50Z
dc.date.available2015-05-14T16:30:50Z
dc.date.issued2015en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111626
dc.description.abstractThis thesis will discuss essential analog circuit blocks required in ultra-low power wireless sensor node systems. A wireless sensor network system requires very high energy and power efficiency which is difficult to achieve with traditional analog circuits. First, 5.58nW real time clock using a DLL (Delay Locked Loop)-assisted pulse-driven crystal oscillator is discussed. In this circuit, the operational amplifier used in the traditional circuit was replaced with pulsed drivers. The pulse was generated at precise timing by a DLL. The circuit parts operate in different supply levels, generated on chip by using a switched capacitor network. The circuit was tested at different supply voltage and temperature. Its frequency characteristic along with power consumption were measured and compared to the traditional circuit. Next, a Schmitt trigger based pulse-driven crystal oscillator is discussed. In the first chapter, a DLL was used to generate a pulse with precise timing. However, testing results and recent study showed that the crystal oscillator can sustain oscillation even with inaccurate pulse timing. In this chapter, pulse location is determined by the Schmitt trigger. Simulation results show that this structure can still sustain oscillation at different process corners and temperature. In the next chapter, a sub-nW 8 bit SAR ADC (Successive Approximation Analog-to-Digital Converter) using transistor-stack DAC (Digital-to-Analog Converter) is discussed. To facilitate design effort and reduce the layout dependent effect, a conventional capacitive DAC was replaced with transistor-stack DAC with a 255:1 multiplexer. The control logic was designed with both TSPC (True Single Phase Clock) and CMOS logic to minimize transistor count. The ADC was implemented in a 65nm CMOS process and tested at different sampling rates and input signal frequency. Its linearity and power consumption was measured. Also, a similar design was implemented and tested using 180nm CMOS process as part of a sensor node system. Lastly, a multiple output level voltage regulator using a switched capacitor network for low-cost system is discussed.en_US
dc.language.isoen_USen_US
dc.subjectanalog circuit designen_US
dc.subjectultra low poweren_US
dc.subjectwireless sensor nodeen_US
dc.subjectcrystal oscillatoren_US
dc.subjectSAR ADCen_US
dc.titleUltra Low Power Analog Circuits for Wireless Sensor Node System.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberBlaauw, Daviden_US
dc.contributor.committeememberMillunchick, Joanna Mireckien_US
dc.contributor.committeememberWentzloff, David D.en_US
dc.contributor.committeememberSylvester, Dennis M.en_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111626/1/dmyoon_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.