Crystal Chemistry, Elastic Properties and Melting Behaviors of Iron-Bearing Materials in Earth and Planetary Interiors.
dc.contributor.author | Liu, Jiachao | en_US |
dc.date.accessioned | 2015-05-14T16:30:52Z | |
dc.date.available | 2015-05-14T16:30:52Z | |
dc.date.issued | 2015 | en_US |
dc.date.submitted | 2015 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/111628 | |
dc.description.abstract | Iron (Fe), with the maximal nuclear stability, is the most abundant element in the Earth. With a partially filled 3d shell, iron adds a variety of influences onto the physical properties and chemical behavior of the Earth and planetary interiors. This dissertation addresses a number of issues concerning the nature and dynamics of the Earth lower mantle and the terrestrial cores. In research chapter I, I studied the crystal chemistry of lower mantle bridgmanite by temperature dependent Mössbauer spectra. I inferred the site occupancy of Fe2+ and Fe3+ in a large number of bridgmanite samples reported in the literature and offered new insights into the crystal chemistry, spin states and electric conduction mechanisms in bridgmanite. In research chapter II, I measured lattice parameters of Fe7C3 at 300 K and up to 68 GPa. Two discontinuities were found in the compression curve, which can be attributed to ferromagnetic to paramagnetic transition and paramagnetic to nonmagnetic transition, respectively. By extrapolating the established equations-of-state to the inner core pressure-temperature conditions, the nonmagnetic phase provides a good match for the observed density of the inner core, whereas the paramagnetic phase would be denser by 12~13 %. In research chapter III, I proposed a new mechanism to explain the nonubiquitous occurrence of ultra-low velocity zones based on my eutectic melting curve of Fe-C system: About 1 wt.% mixture of iron and diamond/iron carbide could be generated in subducted oceanic lithosphere when penetrating the 660 km discontinuity. Such mixture would melt in the basal part of the lower mantle and significantly lower seismic velocities. In research chapter IV, I investigated the melting behaviors of iron-nickel-sulfur system at the pressure of the lunar inner-core boundary (5.1 GPa). Based on my data, I proposed that lunar core with 5.4 ~ 11.3 wt.% sulfur would start to crystallize in the center and support a long-lived lunar dynamo; due to the growth of the inner core, the crystallization of such lunar core would switch to take place at the top of the core and the lunar dynamo is expected to shut down shortly afterwards. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Mineral physics | en_US |
dc.title | Crystal Chemistry, Elastic Properties and Melting Behaviors of Iron-Bearing Materials in Earth and Planetary Interiors. | en_US |
dc.type | Thesis | en_US |
dc.description.thesisdegreename | PhD | en_US |
dc.description.thesisdegreediscipline | Geology | en_US |
dc.description.thesisdegreegrantor | University of Michigan, Horace H. Rackham School of Graduate Studies | en_US |
dc.contributor.committeemember | Li, Jie | en_US |
dc.contributor.committeemember | Sih, Vanessa | en_US |
dc.contributor.committeemember | Lange, Rebecca Ann | en_US |
dc.contributor.committeemember | Simon, Adam Charles | en_US |
dc.contributor.committeemember | Zhang, Youxue | en_US |
dc.subject.hlbsecondlevel | Geology and Earth Sciences | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/111628/1/jiacliu_1.pdf | |
dc.owningcollname | Dissertations and Theses (Ph.D. and Master's) |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.