Show simple item record

Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages

dc.contributor.authorLeushkin, Evgeny V
dc.contributor.authorLogacheva, Maria D
dc.contributor.authorPenin, Aleksey A
dc.contributor.authorSutormin, Roman A
dc.contributor.authorGerasimov, Evgeny S
dc.contributor.authorKochkina, Galina A
dc.contributor.authorIvanushkina, Natalia E
dc.contributor.authorVasilenko, Oleg V
dc.contributor.authorKondrashov, Alexey S
dc.contributor.authorOzerskaya, Svetlana M
dc.date.accessioned2015-05-20T18:01:24Z
dc.date.available2015-05-20T18:01:24Z
dc.date.issued2015-05-21
dc.identifier.citationBMC Genomics. 2015 May 21;16(1):400
dc.identifier.urihttps://hdl.handle.net/2027.42/111733en_US
dc.description.abstractAbstract Background Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. Results We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100–10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. Conclusions Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.
dc.titleComparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages
dc.typeArticleen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111733/1/12864_2015_Article_1570.pdf
dc.identifier.doi10.1186/s12864-015-1570-9en_US
dc.language.rfc3066en
dc.rights.holderLeushkin et al.; licensee BioMed Central.
dc.date.updated2015-05-20T18:01:30Z
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.