Show simple item record

Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes

dc.contributor.authorChristie, Mark R.en_US
dc.contributor.authorKnowles, L. Laceyen_US
dc.date.accessioned2015-06-01T18:51:25Z
dc.date.available2016-07-05T17:27:57Zen
dc.date.issued2015-06en_US
dc.identifier.citationChristie, Mark R.; Knowles, L. Lacey (2015). "Habitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizes." Evolutionary Applications 8(5): 454-463.en_US
dc.identifier.issn1752-4571en_US
dc.identifier.issn1752-4571en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111750
dc.description.abstractCorridors are frequently proposed to connect patches of habitat that have become isolated due to human‐mediated alterations to the landscape. While it is understood that corridors can facilitate dispersal between patches, it remains unknown whether corridors can mitigate the negative genetic effects for entire communities modified by habitat fragmentation. These negative genetic effects, which include reduced genetic diversity, limit the potential for populations to respond to selective agents such as disease epidemics and global climate change. We provide clear evidence from a forward‐time, agent‐based model (ABM) that corridors can facilitate genetic resilience in fragmented habitats across a broad range of species dispersal abilities and population sizes. Our results demonstrate that even modest increases in corridor width decreased the genetic differentiation between patches and increased the genetic diversity and effective population size within patches. Furthermore, we document a trade‐off between corridor quality and corridor design whereby populations connected by high‐quality habitat (i.e., low corridor mortality) are more resilient to suboptimal corridor design (e.g., long and narrow corridors). The ABM also revealed that species interactions can play a greater role than corridor design in shaping the genetic responses of populations to corridors. These results demonstrate how corridors can provide long‐term conservation benefits that extend beyond targeted taxa and scale up to entire communities irrespective of species dispersal abilities or population sizes.en_US
dc.publisherBlackwell Publishingen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherspecies interactionsen_US
dc.subject.othercorridoren_US
dc.subject.otherdispersalen_US
dc.subject.othergene flowen_US
dc.subject.othergenetic diversityen_US
dc.subject.othergenetic resilienceen_US
dc.subject.otherhabitat fragmentationen_US
dc.titleHabitat corridors facilitate genetic resilience irrespective of species dispersal abilities or population sizesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111750/1/eva12255.pdf
dc.identifier.doi10.1111/eva.12255en_US
dc.identifier.sourceEvolutionary Applicationsen_US
dc.identifier.citedreferencePeterson, D. A., R. Hilborn, and L. Hauser 2014. Local adaptation limits lifetime reproductive success of dispersers in a wild salmon metapopulation. Nature Communications 5: 1 – 7.en_US
dc.identifier.citedreferenceMech, S. G., and J. G. Hallett 2001. Evaluating the effectiveness of corridors: a genetic approach. Conservation Biology 15: 467 – 474.en_US
dc.identifier.citedreferenceMendez, M., M. Vogeli, J. L. Tella, and J. A. Godoy 2014. Joint effects of population size and isolation on genetic erosion in fragmented populations: finding fragmentation thresholds for management. Evolutionary Applications 7: 506 – 518.en_US
dc.identifier.citedreferenceOrrock, J. L. 2005. Conservation corridors affect the fixation of novel alleles. Conservation Genetics 6: 623 – 630.en_US
dc.identifier.citedreferencePauls, S. U., C. Nowak, M. Balint, and M. Pfenninger 2013. The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22: 925 – 946.en_US
dc.identifier.citedreferencePulliam, H. R. 1988. Sources, sinks, and population regulation. American Naturalist 132: 652 – 661.en_US
dc.identifier.citedreferenceR core team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.en_US
dc.identifier.citedreferenceResasco, J., N. M. Haddad, J. L. Orrock, D. Shoemaker, T. A. Brudvig, E. I. Damschen, J. J. Tewksbury et al. 2014. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology 95: 2033 – 2039.en_US
dc.identifier.citedreferenceRicketts, T. H. 2001. The matrix matters: effective isolation in fragmented landscapes. American Naturalist 158: 87 – 99.en_US
dc.identifier.citedreferenceRuokolainen, L., and J. Ripa 2012. The strength of species interactions modifies population responses to environmental variation in competitive communities. Journal of Theoretical Biology 310: 199 – 205.en_US
dc.identifier.citedreferenceSharma, S., T. Dutta, J. E. Maldonado, T. C. Wood, H. S. Panwar, and J. Seidensticker 2013. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proceedings of the Royal Society B‐Biological Sciences 280.en_US
dc.identifier.citedreferenceSomervuo, P., J. Kvist, S. Ikonen, P. Auvinen, L. Paulin, P. Koskinen, L. Holm et al. 2014. Transcriptome analysis reveals signature of adaptation to landscape fragmentation. PLoS One 9: e101467.en_US
dc.identifier.citedreferenceSpielman, D., B. W. Brook, D. A. Briscoe, and R. Frankham 2004. Does inbreeding and loss of genetic diversity decrease disease resistance? Conservation Genetics 5: 439 – 448.en_US
dc.identifier.citedreferenceStockwell, C. A., A. P. Hendry, and M. T. Kinnison 2003. Contemporary evolution meets conservation biology. Trends in Ecology & Evolution 18: 94 – 101.en_US
dc.identifier.citedreferenceTewksbury, J. J., D. J. Levey, N. M. Haddad, S. Sargent, J. L. Orrock, A. Weldon, B. J. Danielson et al. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America 99: 12923 – 12926.en_US
dc.identifier.citedreferenceTilman, D., and P. M. Kareiva. 1997. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, Vol. 30. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceUrban, M. C., P. L. Zarnetske, and D. K. Skelly 2013. Moving forward: dispersal and species interactions determine biotic responses to climate change. Climate Change and Species Interactions: Ways Forward 1297: 44 – 60.en_US
dc.identifier.citedreferenceVitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo 1997. Human domination of Earth's ecosystems. Science 277: 494 – 499.en_US
dc.identifier.citedreferenceWaples, R. S. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity 89: 438 – 450.en_US
dc.identifier.citedreferenceWarnes, G. R., B. Bolker, L. Bonebakker, R. Gentleman, W. Huber, A. Liaw, T. Lumley et al. 2014. gplots: Various R programming tools for plotting data. R package version 2.13.0. http://CRAN.R-project.org/package=gplots.en_US
dc.identifier.citedreferenceWhite, J. W., A. Rassweiler, J. F. Samhouri, A. C. Stier, and C. White 2014. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos 123: 385 – 388.en_US
dc.identifier.citedreferenceWier, B. S., and C. C. Cockerham 1984. Estimating F statistics for the analysis of population structure. Evolution 38: 1358 – 1370.en_US
dc.identifier.citedreferenceYang, J. M., and F. Stern 2013. Robust and efficient setup procedure for complex triangulations in immersed boundary simulations. Journal of Fluids Engineering 135:101107‐1‐101107‐11.en_US
dc.identifier.citedreferenceAguilar, R., M. Quesada, L. Ashworth, Y. Herrerias‐Diego, and J. Lobo 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology 17: 5177 – 5188.en_US
dc.identifier.citedreferenceAllendorf, F. W., G. Luikart, and S. N. Aitken 2013. Conservation and the Genetics of Populations, 2nd edn. Blackwell Publishing, Malden, MA.en_US
dc.identifier.citedreferenceAlo, D., and T. F. Turner 2005. Effects of habitat fragmentation on effective population size in the endangered Rio Grande silvery minnow. Conservation Biology 19: 1138 – 1148.en_US
dc.identifier.citedreferenceAndreassen, H. P., S. Halle, and R. A. Ims 1996. Optimal width of movement corridors for root voles: not too narrow and not too wide. Journal of Applied Ecology 33: 63 – 70.en_US
dc.identifier.citedreferenceBarnosky, A. D., E. A. Hadly, J. Bascompte, E. L. Berlow, J. H. Brown, M. Fortelius, W. M. Getz et al. 2012. Approaching a state shift in Earth's biosphere. Nature 486: 52 – 58.en_US
dc.identifier.citedreferenceBeier, P., and A. J. Gregory 2012. Desperately seeking stable 50‐year‐old landscapes with patches and long, wide corridors. PLoS Biology 10: e1001253.en_US
dc.identifier.citedreferenceBeier, P., and R. F. Noss 1998. Do habitat corridors provide connectivity? Conservation Biology 12: 1241 – 1252.en_US
dc.identifier.citedreferenceBerlow, E. L., S. A. Navarrete, C. J. Briggs, M. E. Power, and B. A. Menge 1999. Quantifying variation in the strengths of species interactions. Ecology 80: 2206 – 2224.en_US
dc.identifier.citedreferenceBoulangeat, I., D. Gravel, and W. Thuiller 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters 15: 584 – 593.en_US
dc.identifier.citedreferenceBrudvig, L. A., E. I. Damschen, J. J. Tewksbury, N. M. Haddad, and D. J. Levey 2009. Landscape connectivity promotes plant biodiversity spillover into non‐target habitats. Proceedings of the National Academy of Sciences of the United States of America 106: 9328 – 9332.en_US
dc.identifier.citedreferenceChristie, M. R., M. L. Marine, R. A. French, R. S. Waples, and M. S. Blouin 2012. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109: 254 – 260.en_US
dc.identifier.citedreferenceDamschen, E. I., L. A. Brudvig, N. M. Haddad, D. J. Levey, J. L. Orrock, and J. J. Tewksbury 2008. The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America 105: 19078 – 19083.en_US
dc.identifier.citedreferenceDesai, M. M., A. M. Walczak, and D. S. Fisher. 2013. Genetic diversity and the structure of 473 genealogies in rapidly adapting populations. Genetics 193: 565 – 585.en_US
dc.identifier.citedreferenceDo, C., R. S. Waples, D. Peel, G. M. Macbeth, B. J. Tillett, and J. R. Ovenden 2014. NEESTIMATOR v2: re‐implementation of software for the estimation of contemporary effective population size (N‐e) from genetic data. Molecular Ecology Resources 14: 209 – 214.en_US
dc.identifier.citedreferenceDoi, H., M. Takahashi, and I. Katano 2010. Genetic diversity increases regional variation in phenological dates in response to climate change. Global Change Biology 16: 373 – 379.en_US
dc.identifier.citedreferenceFagan, W. F., R. S. Cantrell, and C. Cosner 1999. How habitat edges change species interactions. The American Naturalist 153: 165 – 182.en_US
dc.identifier.citedreferenceFoley, J. A., N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller et al. 2011. Solutions for a cultivated planet. Nature 478: 337 – 342.en_US
dc.identifier.citedreferenceFrankham, R. 2008. Genetic adaptation to captivity in species conservation programs. Molecular Ecology 17: 325 – 333.en_US
dc.identifier.citedreferenceFrankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to Conservation Genetics, Introduction to Conservation Genetics. Cambridge University Press, Cambridge, New York.en_US
dc.identifier.citedreferenceGenz, A., and A. Azzalini. 2013. mnormt: The multivariate normal and t distributions. R package version 1.4‐7.en_US
dc.identifier.citedreferenceGilbert‐Norton, L., R. Wilson, J. R. Stevens, and K. H. Beard 2010. A meta‐analytic review of corridor effectiveness. Conservation Biology 24: 660 – 668.en_US
dc.identifier.citedreferenceGoudet, J. 2005. HIERFSTAT, a package for R to compute and test hierarchical F‐statistics. Molecular Ecology Notes 5: 184 – 186.en_US
dc.identifier.citedreferenceGregory, A. J., and P. Beier 2014. Response variables for evaluation of the effectiveness of conservation corridors. Conservation Biology 28: 689 – 695.en_US
dc.identifier.citedreferenceHaberl, H., K. H. Erb, F. Krausmann, V. Gaube, A. Bondeau, C. Plutzar, S. Gingrich et al. 2007. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America 104: 12942 – 12945.en_US
dc.identifier.citedreferenceHaddad, N. M. 1999. Corridor use predicted from behaviors at habitat boundaries. American Naturalist 153: 215 – 227.en_US
dc.identifier.citedreferenceHaddad, N. M., and J. J. Tewksbury 2005. Low‐quality habitat corridors as movement conduits for two butterfly species. Ecological Applications 15: 250 – 257.en_US
dc.identifier.citedreferenceHaddad, N. M., D. R. Bowne, A. Cunningham, B. J. Danielson, D. J. Levey, S. Sargent, and T. Spira 2003. Corridor use by diverse taxa. Ecology 84: 609 – 615.en_US
dc.identifier.citedreferenceHaddad, N. M., L. A. Brudvig, E. I. Damschen, D. M. Evans, B. L. Johnson, D. J. Levey, J. L. Orrock et al. 2014. Potential negative ecological effects of corridors. Conservation Biology 28: 1178 – 1187.en_US
dc.identifier.citedreferenceHanski, I. 1994. Patch‐occupancy dynamics in fragmented landscapes. Trends in Ecology & Evolution 9: 131 – 135.en_US
dc.identifier.citedreferenceHanski, I. 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87: 209 – 219.en_US
dc.identifier.citedreferenceHarrison, R. L. 1992. Toward a theory of inter‐refuge corridor design. Conservation Biology 6: 293 – 295.en_US
dc.identifier.citedreferenceHedrick, P. W. 2005. Genetics of Populations, 3rd edn. Jones and Bartlett Publishers, Sudbury, MA.en_US
dc.identifier.citedreferenceHoban, S., J. A. Arntzen, M. W. Bruford, J. A. Godoy, A. R. Hoelzel, G. Segelbacher, C. Vilà et al. 2014. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evolutionary Applications 7: 984 – 998.en_US
dc.identifier.citedreferenceHughes, W. O. H., and J. J. Boomsma 2004. Genetic diversity and disease resistance in leaf‐cutting ant societies. Evolution 58: 1251 – 1260.en_US
dc.identifier.citedreferenceLaPoint, S., P. Gallery, M. Wikelski, and R. Kays 2013. Animal behavior, cost‐based corridor models, and real corridors. Landscape Ecology 28: 1615 – 1630.en_US
dc.identifier.citedreferenceLees, A. C., and C. A. Peres 2008. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conservation Biology 22: 439 – 449.en_US
dc.identifier.citedreferenceLemon, J. 2006. Plotrix: a package in the red light district of R. R‐News 6: 8 – 12.en_US
dc.identifier.citedreferenceLindenmayer, D. B., and H. A. Nix 1993. Ecological principles for the design of wildlife corridors. Conservation Biology 7: 627 – 630.en_US
dc.identifier.citedreferenceMann, C. C., and M. L. Plummer 1995. Are wildlife corridors the right path. Science 270: 1428 – 1430.en_US
dc.identifier.citedreferenceMartins, A. B., M. A. M. de Aguiar, and Y. Bar‐Yam 2013. Evolution and stability of ring species. Proceedings of the National Academy of Sciences of the United States of America 110: 5080 – 5084.en_US
dc.identifier.citedreferenceMcPeek, M. A., and B. L. Peckarsky 1998. Life histories and the strengths of species interactions: combining mortality, growth, and fecundity effects. Ecology 79: 867 – 879.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.