Show simple item record

FGF22 signaling regulates synapse formation during post‐injury remodeling of the spinal cord

dc.contributor.authorJacobi, Anneen_US
dc.contributor.authorLoy, Kristinaen_US
dc.contributor.authorSchmalz, Anja Men_US
dc.contributor.authorHellsten, Mikaelen_US
dc.contributor.authorUmemori, Hisashien_US
dc.contributor.authorKerschensteiner, Martinen_US
dc.contributor.authorBareyre, Florence Men_US
dc.date.accessioned2015-06-01T18:51:33Z
dc.date.available2016-06-01T20:54:35Zen
dc.date.issued2015-05-05en_US
dc.identifier.citationJacobi, Anne; Loy, Kristina; Schmalz, Anja M; Hellsten, Mikael; Umemori, Hisashi; Kerschensteiner, Martin; Bareyre, Florence M (2015). "FGF22 signaling regulates synapse formation during post‐injury remodeling of the spinal cord." The EMBO Journal 34(9): 1231-1243.en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111756
dc.description.abstractThe remodeling of axonal circuits after injury requires the formation of new synaptic contacts to enable functional recovery. Which molecular signals initiate such axonal and synaptic reorganisation in the adult central nervous system is currently unknown. Here, we identify FGF22 as a key regulator of circuit remodeling in the injured spinal cord. We show that FGF22 is produced by spinal relay neurons, while its main receptors FGFR1 and FGFR2 are expressed by cortical projection neurons. FGF22 deficiency or the targeted deletion of FGFR1 and FGFR2 in the hindlimb motor cortex limits the formation of new synapses between corticospinal collaterals and relay neurons, delays their molecular maturation, and impedes functional recovery in a mouse model of spinal cord injury. These results establish FGF22 as a synaptogenic mediator in the adult nervous system and a crucial regulator of synapse formation and maturation during post‐injury remodeling in the spinal cord.SynopsisFollowing spinal cord injury, transected projections form detour circuits that circumvent the lesion and contribute to functional recovery. The formation of new synaptic contacts is a crucial step of the process, but its molecular regulation is currently not understood. Members of the FGF family can promote synapse formation during nervous system development, suggesting that they might have a similar function in the injured adult CNS. Here, we show that:FGF22 and FGF22 receptors are expressed in the adult nervous system.FGF22 deficiency or deletion of FGF22 receptors restricts the formation and maturation of new synapses in the injured spinal cord.Genetic disruption of FGF22 signaling impedes spontaneous functional recovery following spinal cord injury.FGF22 is a synaptogenic mediator in the adult nervous system and promotes synaptic plasticity and circuit remodeling in a mouse model of spinal cord injury.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherfibroblast growth factoren_US
dc.subject.otherspinal cord injuryen_US
dc.subject.otheraxonal remodelingen_US
dc.subject.otherfunctional recoveryen_US
dc.subject.othersynapse formationen_US
dc.titleFGF22 signaling regulates synapse formation during post‐injury remodeling of the spinal corden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111756/1/embj201490578-sup-0001-Suppl_Info.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111756/2/embj201490578.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111756/3/embj201490578.reviewer_comments.pdf
dc.identifier.doi10.15252/embj.201490578en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceShim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM ( 2012 ) PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte‐derived Sema6A growth inhibition. Mol Cell Neurosci 50: 193 – 200en_US
dc.identifier.citedreferenceKaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, Okano HJ, Ikegami T, Moriya A, Konishi O, Nakayama C, Kumagai K, Kimura T, Sato Y, Goshima Y, Taniguchi M, Ito M, He Z, Toyama Y, Okano H ( 2006 ) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12: 1380 – 1389en_US
dc.identifier.citedreferenceKlugmann M, Symes CW, Leichtlein CB, Klaussner BK, Dunning J, Fong D, Young D, During MJ ( 2005 ) AAV‐mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol Cell Neurosci 28: 347 – 360en_US
dc.identifier.citedreferenceLang C, Guo X, Kerschensteiner M, Bareyre FM ( 2012 ) Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury. PLoS One 7: e30461en_US
dc.identifier.citedreferenceLang C, Bradley PM, Jacobi A, Kerschensteiner M, Bareyre FM ( 2013 ) STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury. EMBO Rep 14: 931 – 937en_US
dc.identifier.citedreferenceLindau NT, Bänninger BJ, Gullo M, Good NA, Bachmann LC, Starkey ML, Schwab ME ( 2014 ) Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti‐Nogo‐A therapy. Brain 137: 739 – 756en_US
dc.identifier.citedreferenceMetz GA, Whishaw IQ ( 2002 ) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore‐ and hindlimb stepping, placing, and co‐ordination. J Neurosci Methods 115: 169 – 179en_US
dc.identifier.citedreferenceMicheva KD, Busse B, Weiler NC, O'Rourke N, Smith SJ ( 2010 ) Single‐synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68: 639 – 653en_US
dc.identifier.citedreferencePiaton G, Aigrot MS, Williams A, Moyon S, Tepavcevic V, Moutkine I, Gras J, Matho KS, Schmitt A, Soellner H, Huber AB, Ravassard P, Lubetzki C ( 2011 ) Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 134: 1156 – 1167en_US
dc.identifier.citedreferencePirvola U, Ylikoski J, Trokovic R, Hébert JM, McConnell SK, Partanen J ( 2002 ) FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35: 671 – 680en_US
dc.identifier.citedreferenceSanes JR, Lichtman JW ( 2001 ) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2: 791 – 805en_US
dc.identifier.citedreferenceShah PK, Garcia‐Alias G, Choe J, Gad P, Gerasimenko Y, Tillakaratne N, Zhong H, Roy RR, Edgerton VR ( 2013 ) Use of quadrupedal step training to re‐engage spinal interneuronal networks and improve locomotor function after spinal cord injury. Brain 136: 3362 – 3377en_US
dc.identifier.citedreferenceShapira M, Zhai RG, Dresbach T, Bresler T, Torres VI, Gundelfinger E, Ziv N, Garner CC ( 2003 ) Unitary assembly of presynaptic active zones from Piccolo‐Bassoon transport vesicles. Neuron 38: 237 – 252en_US
dc.identifier.citedreferenceSiddiqui TJ, Craig AM ( 2011 ) Synaptic organizing complexes. Curr Opin Neurobiol 21: 132 – 143en_US
dc.identifier.citedreferenceSingh R, Su J, Brooks J, Terauchi A, Umemori H, Fox MA ( 2012 ) Fibroblast growth factor 22 contributes to the development of retinal nerve terminals in the dorsal lateral geniculate nucleus. Front Mol Neurosci 4: 61en_US
dc.identifier.citedreferenceStevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM ( 2010 ) Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J Neurosci 30: 5590 – 5602en_US
dc.identifier.citedreferenceTerauchi A, Johnson‐Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H ( 2010 ) Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 465: 783 – 787en_US
dc.identifier.citedreferenceUmemori H, Linhoff MW, Ornitz DM, Sanes JR ( 2004 ) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118: 257 – 270en_US
dc.identifier.citedreferenceWeidner N, Ner A, Salimi N, Tuszynski MH ( 2001 ) Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci USA 98: 3513 – 3518en_US
dc.identifier.citedreferenceWilliams ME, de Wit J, Ghosh A ( 2010 ) Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68: 9 – 18en_US
dc.identifier.citedreferenceYip PK, Wong LF, Sears TA, Yáñez‐Muñoz RJ, McMahon SB ( 2010 ) Cortical overexpression of neuronal calcium sensor‐1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol 8: e1000399en_US
dc.identifier.citedreferenceYu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, Towler DA, Ornitz DM ( 2003 ) Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130: 3063 – 3074en_US
dc.identifier.citedreferenceZhai RG, Vardinon‐Friedman H, Cases‐Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC ( 2001 ) Assembling the presynaptic active zone: a characterization of an active zone precursor vesicle. Neuron 29: 131 – 143en_US
dc.identifier.citedreferenceZhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM ( 2006 ) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281: 15694 – 15700en_US
dc.identifier.citedreferenceZörner B, Bachmann LC, Filli L, Kapitza S, Gullo M, Bolliger M, Starkey ML, Röthlisberger M, Gonzenbach RR, Schwab ME ( 2014 ) Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury. Brain 137: 1716 – 1732en_US
dc.identifier.citedreferenceBareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME ( 2004 ) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7: 269 – 277en_US
dc.identifier.citedreferenceBareyre FM, Kerschensteiner M, Misgeld T, Sanes JR ( 2005 ) Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury. Nat Med 11: 1355 – 1360en_US
dc.identifier.citedreferencevan den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G ( 2012 ) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336: 1182 – 1185en_US
dc.identifier.citedreferenceCourtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV ( 2008 ) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14: 69 – 74en_US
dc.identifier.citedreferenceFox MA, Sanes JR, Borza DB, Eswarakumar VP, Fassler R, Hudson BG, John SW, Ninomiya Y, Pedchenko V, Pfaff SL, Rheault MN, Sado Y, Segal Y, Werle MJ, Umemori H ( 2007 ) Distinct target‐derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129: 179 – 193en_US
dc.identifier.citedreferenceGarcía‐Alías G, Barkhuysen S, Buckle M, Fawcett JW ( 2009 ) Chondroitinase ABC treatment opens a window of opportunity for task‐specific rehabilitation. Nat Neurosci 12: 1145 – 1151en_US
dc.identifier.citedreferenceGirgis J, Merrett D, Kirkland S, Metz GA, Verge V, Fouad K ( 2007 ) Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain 130: 2993 – 3003en_US
dc.identifier.citedreferenceGoldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, Pearse M, Galea M, Bartlett PF, Boyd AW, Turnley AM ( 2011 ) EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 6: e24636en_US
dc.identifier.citedreferenceGorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR ( 2002 ) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1‐expressing lineage. J Neurosci 22: 6309 – 6314en_US
dc.identifier.citedreferenceGrimm D, Kay MA, Kleinschmidt JA ( 2003 ) Helper virus‐free, optically controllable, and two‐plasmid‐based production of adeno‐associated virus vectors of serotypes 1 to 6. Mol Ther 7: 839 – 850en_US
dc.identifier.citedreferenceHamers FP, Koopmans GC, Joosten EA ( 2006 ) CatWalk‐assisted gait analysis in the assessment of spinal cord injury. J Neurotrauma 23: 537 – 548en_US
dc.identifier.citedreferenceHofbauer M, Wiesener S, Babbe H, Roers A, Wekerle H, Dornmair K, Hohlfeld R, Goebels N ( 2003 ) Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single‐cell PCR, and CDR3‐spectratype analysis. Proc Natl Acad Sci USA 100: 4090 – 4095en_US
dc.identifier.citedreferenceJacobi A, Schmalz A, Bareyre FM ( 2014 ) Abundant expression of guidance and synaptogenic molecules in the injured spinal cord. PLoS One 9: e88449en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.