Show simple item record

The significance and scope of evolutionary developmental biology: a vision for the 21st century

dc.contributor.authorMoczek, Armin P.en_US
dc.contributor.authorSears, Karen E.en_US
dc.contributor.authorStollewerk, Angelikaen_US
dc.contributor.authorWittkopp, Patricia J.en_US
dc.contributor.authorDiggle, Pamelaen_US
dc.contributor.authorDworkin, Ianen_US
dc.contributor.authorLedon‐rettig, Cristinaen_US
dc.contributor.authorMatus, David Q.en_US
dc.contributor.authorRoth, Siegfrieden_US
dc.contributor.authorAbouheif, Ehaben_US
dc.contributor.authorBrown, Federico D.en_US
dc.contributor.authorChiu, Chi‐huaen_US
dc.contributor.authorCohen, C. Sarahen_US
dc.contributor.authorTomaso, Anthony W. Deen_US
dc.contributor.authorGilbert, Scott F.en_US
dc.contributor.authorHall, Brianen_US
dc.contributor.authorLove, Alan C.en_US
dc.contributor.authorLyons, Deirdre C.en_US
dc.contributor.authorSanger, Thomas J.en_US
dc.contributor.authorSmith, Joelen_US
dc.contributor.authorSpecht, Chelseaen_US
dc.contributor.authorVallejo‐marin, Marioen_US
dc.contributor.authorExtavour, Cassandra G.en_US
dc.date.accessioned2015-06-01T18:51:41Z
dc.date.available2016-07-05T17:27:57Zen
dc.date.issued2015-06en_US
dc.identifier.citationMoczek, Armin P.; Sears, Karen E.; Stollewerk, Angelika; Wittkopp, Patricia J.; Diggle, Pamela; Dworkin, Ian; Ledon‐rettig, Cristina ; Matus, David Q.; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D.; Chiu, Chi‐hua ; Cohen, C. Sarah; Tomaso, Anthony W. De; Gilbert, Scott F.; Hall, Brian; Love, Alan C.; Lyons, Deirdre C.; Sanger, Thomas J.; Smith, Joel; Specht, Chelsea; Vallejo‐marin, Mario ; Extavour, Cassandra G. (2015). "The significance and scope of evolutionary developmental biology: a vision for the 21st century." Evolution & Development 17(3): 198-219.en_US
dc.identifier.issn1520-541Xen_US
dc.identifier.issn1525-142Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111768
dc.publisherSpringer Verlagen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleThe significance and scope of evolutionary developmental biology: a vision for the 21st centuryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111768/1/ede12125.pdf
dc.identifier.doi10.1111/ede.12125en_US
dc.identifier.sourceEvolution & Developmenten_US
dc.identifier.citedreferenceSchneider, I., and Shubin, N. H. 2013. The origin of the tetrapod limb: from expeditions to enhancers. Trends Genet. 29: 419 – 426.en_US
dc.identifier.citedreferenceWagner, A. 2005. Robustness and Evolvability in Living Systems. Princeton: Princeton University Press.en_US
dc.identifier.citedreferenceWagner, A. 2011. The Origins of Evolutionary Innovations. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceWagner, G. P. 2007. The developmental genetics of homology. Nat. Rev. Genet. 8: 473 – 479.en_US
dc.identifier.citedreferenceWagner, G. P. 2014. Homology Genes and Evolutionary Innovation. Princeton University Press, Princeton.en_US
dc.identifier.citedreferenceWagner, G. P., Pavlicev, M., and Cheverud, J. M. 2007. The road to modularity. Nat. Rev. Genet. 8 ( 12 ): 921 – 931.en_US
dc.identifier.citedreferenceWake, D. B., Wake, M. H., and Specht, C. D. 2011. Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331 ( 6020 ): 1032 – 1035.en_US
dc.identifier.citedreferenceWang, Z., Young, R. L., Xue, H., and Wagner, G. P. 2011. Transcriptomic analysis of avian digits reveals conserved and derived digit identities in birds. Nature 477: 583 – 586.en_US
dc.identifier.citedreferenceWarner, D. A., and Shine, R. 2008. The adaptive significance of temperature‐dependent sex determination in a reptile. Nature 451 ( 7178 ): 566 – 568.en_US
dc.identifier.citedreferenceWarner, J. F., McCarthy, A. M., Morris, R. L., and McClay, D. R. 2014. Hedgehog signaling requires motile cilia in the sea urchin. Mol. Biol. Evol. 31 ( 1 ): 18 – 22.en_US
dc.identifier.citedreferenceWatson, R. A., Wagner, G. P., Pavlicev, M., Weinreich, D. M., and Mills, R. 2014. The evolution of phenotypic correlations and “developmental memory”. Evolution Int. J. Org. Evolution 68 ( 4 ): 1124 – 1138.en_US
dc.identifier.citedreferenceWeber, J. N., Peterson, B. K., and Hoekstra, H. E. 2013. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493 ( 7432 ): 402 – 405.en_US
dc.identifier.citedreferenceWeigel, D. 2012. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158 ( 1 ): 2 – 22.en_US
dc.identifier.citedreferenceWeintraub, H., et al. 1991. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251 ( 4995 ): 761 – 766.en_US
dc.identifier.citedreferenceWeiss, K. M., and Fullerton, S. M. 2000. Phenogenetic drift and the evolution of genotype‐phenotype relationships. Theor. Popul. Biol. 57: 187 – 195.en_US
dc.identifier.citedreferenceWerner, E. E., and Peacor, S. D. 2003. A review of trait‐mediated indirect interactions in ecological communities. Ecology 84 ( 5 ): 1083 – 1100.en_US
dc.identifier.citedreferenceWessinger, C. A., and Rausher, M. D. 2012. Lessons from flower colour evolution on targets of selection. J. Exp. Bot. 63 ( 16 ): 5741 – 5749.en_US
dc.identifier.citedreferenceWest‐Eberhard, M. J. 2003. Developmental Plasticity and Evolution. Oxford University Press, Oxford.en_US
dc.identifier.citedreferenceWest‐Eberhard, M. J. 2005. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. Part B, Mol. Dev. Evol. 304 ( 6 ): 610 – 618.en_US
dc.identifier.citedreferenceWills, D. M., Abdel‐Haleem, H., Knapp, S. J., and Burke, J. M. 2010. Genetic architecture of novel traits in the hopi sunflower. J. Hered. 101 ( 6 ): 727 – 736.en_US
dc.identifier.citedreferenceWittkopp, P. J., and Beldade, P. 2009. Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20 ( 1 ): 65 – 71.en_US
dc.identifier.citedreferenceWittkopp, P. J., and Kalay, G. 2011. Cis‐regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13 ( 1 ): 59 – 69.en_US
dc.identifier.citedreferenceWittkopp, P. J., Williams, B. L., Selegue, J. E., and Carroll, S. B. 2003. Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc. Natl. Acad. Sci. USA 100 ( 4 ): 1808 – 1813.en_US
dc.identifier.citedreferenceWolf, J. B., Frankino, W. A., Agrawal, A. F., Brodie, E. D., III, and Moore, A. J. 2001. Developmental interactions and the constituents of quantitative variation. Evolution Int. J. Org. Evolution 55 ( 2 ): 232 – 245.en_US
dc.identifier.citedreferenceWolf, J. B., Pomp, D., Eisen, E. J., Cheverud, J. M., and Leamy, L. J. 2006. The contribution of epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in mice. Evol. Dev. 8 ( 5 ): 468 – 476.en_US
dc.identifier.citedreferenceWoltering, J. M., Noordermeer, D., Leleu, M., and Duboule, D. 2014. Conservation and divergence of regulatory strategies at Hox Loci and the origin of tetrapod digits. PLoS Biol. 12 ( 1 ): 1001773.en_US
dc.identifier.citedreferenceWoodin, T., Carter, V. C., and Fletcher, L. 2010. Vision and Change in Biology Undergraduate Education, A Call for Action‐Initial Responses. CBE Life Sci. Educ. 9 ( 2 ): 71 – 73.en_US
dc.identifier.citedreferenceWray, G. A. 2007. The evolutionary significance of cis‐regulatory mutations. Nat. Rev. Genet. 8 ( 3 ): 206 – 216.en_US
dc.identifier.citedreferenceWynshaw‐Boris, A. 1996. Model mice and human disease. Nat. Genet. 13 ( 3 ): 259 – 260.en_US
dc.identifier.citedreferenceTrue, J. R., and Haag, E. S. 2001. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3: 109 – 119.en_US
dc.identifier.citedreferenceYamanaka, N., et al. 2013. Neuroendocrine control of Drosophila larval light preference. Science 341 ( 6150 ): 1113 – 1116.en_US
dc.identifier.citedreferenceYang, J., Kloepper, J. W., and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14 ( 1 ): 1 – 4.en_US
dc.identifier.citedreferenceYockteng, R., Almeida, A. M., Morioka, K., Alvarez‐Buylla, E. R., and Specht, C. D. 2013. Molecular evolution and patterns of duplication in the SEP/AGL6‐like lineage of the Zingiberales: a proposed mechanism for floral diversification. Mol. Biol. Evol. 30 ( 11 ): 2401 – 2422.en_US
dc.identifier.citedreferenceYu, Q., Ahmad‐Hamdani, M. S., Han, H., Christoffers, M. J., and Powles, S. B. 2013. Herbicide resistance‐endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species. Heredity 110 ( 3 ): 220 – 231.en_US
dc.identifier.citedreferenceZahn, L. M., et al. 2010. Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies. Genome Biol. 11 ( 10 ): R101.en_US
dc.identifier.citedreferenceZelditch, M. L., Swiderski, D. L., and Sheets, H. D. 2012. Geometric Morphometrics for Biologists: A Primer. 2nd Edition. Academic Press, Amsterdam.en_US
dc.identifier.citedreferenceZhu, J., Zhang, Y. T., Alber, M. S., and Newman, S. A. 2010. Bare bones pattern formation: A core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS ONE 5 ( 5 ): e0892.en_US
dc.identifier.citedreferenceAbouheif, E., et al. 1997. Homology and developmental genes. Trends Genet. 13: 432 – 433.en_US
dc.identifier.citedreferenceAgrawal, A. F., Brodie, E. D., III, and Rieseberg, L. H. 2001. Possible consequences of genes of major effect: transient changes in the G‐matrix. Genetica 112–113: 33 – 43.en_US
dc.identifier.citedreferenceAiroldi, C. A., Bergonzi, S., and Davies, B. 2010. Single amino acid change alters the ability to specify male or female organ identity. Proc. Natl. Acad. Sci. USA 107 ( 44 ): 18898 – 18902.en_US
dc.identifier.citedreferenceAlberch, P., and Gale, E. A. 1985. A developmental analysis of an evolutonary trend: digital reduction in amphibians. Evolution 39 ( 1 ): 8 – 23.en_US
dc.identifier.citedreferenceAlmirantis, Y., Provata, A., and Papageorgiou, S. 2013. Evolutionary constraints favor a biophysical model explaining hox gene collinearity. Curr. Genomics 14 ( 4 ): 279 – 288.en_US
dc.identifier.citedreferenceAlonso, C. R., and Wilkins, A. S. 2005. The molecular elements that underlie developmental evolution. Nat. Rev. Genet. 6 ( 9 ): 709 – 715.en_US
dc.identifier.citedreferenceArthur, W., 2002. The interaction between developmental bias and natural selection: from centipede segments to a general hypothesis. Heredity 89 ( 4 ): 239 – 246.en_US
dc.identifier.citedreferenceAubret, F., and Shine, R. 2009. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19 ( 22 ): 1932 – 1936.en_US
dc.identifier.citedreferenceBartlett, M. E., and Specht, C. D. 2010. Evidence for the involvement of Globosa‐like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. New Phytol. 187 ( 2 ): 521 – 541.en_US
dc.identifier.citedreferenceBateson, P., et al. 2004. Developmental plasticity and human health. Nature 430 ( 6998 ): 419 – 421.en_US
dc.identifier.citedreferenceBecker, A., Winter, K. U., Meyer, B., Saedler, H., and Theissen, G. 2000. MADS‐Box gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 17 ( 10 ): 1425 – 1434.en_US
dc.identifier.citedreferenceBelyaev, D. K., Ruvinsky, A. O., and Trut, L. N. 1981. Inherited activation‐inactivation of the star gene in foxes: its bearing on the problem of domestication. J. Hered. 72 ( 4 ): 267 – 274.en_US
dc.identifier.citedreferenceBennett, B. H., Parker, D. L., and Robson, M. 2008. Leprosy: steps along the journey of eradication. Public Health Rep. 123 ( 2 ): 198 – 205.en_US
dc.identifier.citedreferenceBerman, D. M., et al. 2002. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297 ( 5586 ): 1559 – 1561.en_US
dc.identifier.citedreferenceBhullar, B. A., et al. 2012. Birds have paedomorphic dinosaur skulls. Nature 487: 223 – 226.en_US
dc.identifier.citedreferenceBiffar, L., and Stollewerk, A. 2014. Conservation and evolutionary modifications of neuroblast expression patterns in insects. Dev. Biol. 388 ( 1 ): 103 – 116.en_US
dc.identifier.citedreferenceGluckman, P. D., and Hanson, M. A. 2004. Living with the past: evolution, development, and patterns of disease. Science 305 ( 5691 ): 1733 – 1736.en_US
dc.identifier.citedreferenceBilbo, S. D., Wray, G. A., Perkins, S. E., and Parker, W. 2011. Reconstitution of the human biome as the most reasonable solution for epidemics of allergic and autoimmune diseases. Med. Hypotheses 77 ( 4 ): 494 – 504.en_US
dc.identifier.citedreferenceBlackiston, D. J., Silva Casey, E., and Weiss, M. R. 2008. Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar. PLoS ONE 3 ( 3 ): e1736.en_US
dc.identifier.citedreferenceBloom, S., Ledon‐Rettig, C., Infante, C., Everly, A., Hanken, J., and Nascone‐Yoder, N. 2013. Developmental origins of a novel gut morphology in frogs. Evol. Dev. 15 ( 3 ): 213 – 223.en_US
dc.identifier.citedreferenceBonner, J. T. 1982. Evolution and Development. Report of the Dahlem Workshop on Evolution and Development. Berlin 1981, May 10‐15. Springer Verlag, R. Berlin.en_US
dc.identifier.citedreferenceBraendle, C., and Flatt, T. 2006. A role for genetic accommodation in evolution? BioEssays 28 ( 9 ): 868 – 873.en_US
dc.identifier.citedreferenceBrakefield, P. M. 2011. Evo‐devo and accounting for Darwin's endless forms. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 366 ( 1574 ): 2069 – 2075.en_US
dc.identifier.citedreferenceBrisson, J. A., and Nuzhdin, S. V. 2008. Rarity of males in pea aphids results in mutational decay. Science 319 ( 5859 ): 58.en_US
dc.identifier.citedreferenceBulgarelli, D., et al. 2012. Revealing structure and assembly cues for Arabidopsis root‐inhabiting bacterial microbiota. Nature 488 ( 7409 ): 91 – 95.en_US
dc.identifier.citedreferenceBumbarger, D. J., Riebesell, M., Rodelsperger, C., and Sommer, R. J. 2013. System‐wide rewiring underlies behavioral differences in predatory and bacterial‐feeding nematodes. Cell 152 ( 1–2 ): 109 – 119.en_US
dc.identifier.citedreferenceByrne, M. E. 2012. Making leaves. Curr. Opin. Plant Biol. 15 ( 1 ): 24 – 30.en_US
dc.identifier.citedreferenceCharmantier, A., McCleery, R. H., Cole, L. R., Perrins, C., Kruuk, L. E., and Sheldon, B. C. 2008. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320 ( 5877 ): 800 – 803.en_US
dc.identifier.citedreferenceCharnov, E. L., and Bull, J. 1977. When is sex environmentally determined. Nature 266 ( 5605 ): 828 – 830.en_US
dc.identifier.citedreferenceChew, K. Y., Shaw, G., Yu, H., Pask, A. J., and Renfree, M. B. 2014. Heterochrony in the regulation of the developing marsupial limb. Dev. Dyn. 243: 324 – 338.en_US
dc.identifier.citedreferenceChipman, A. D., Arthur, W., and Akam, M. 2004. A double segment periodicity underlies segment generation in centipede development. Curr. Biol. 14 ( 14 ): 1250 – 1255.en_US
dc.identifier.citedreferenceChristiaen, L., et al. 2008. The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320 ( 5881 ): 1349 – 1352.en_US
dc.identifier.citedreferenceClay, M. R., and Halloran, M. C. 2013. Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial‐to‐mesenchymal transition. Development 140 ( 15 ): 3198 – 3209.en_US
dc.identifier.citedreferenceCoen, E., 2000. The Art of Genes: How Organisms Make Themselves. Oxford: Oxford University Press.en_US
dc.identifier.citedreferenceCohn, M. J. 2004. Developmental genetics of the external genitalia. Adv. Exp. Med. Biol. 545: 149 – 157.en_US
dc.identifier.citedreferenceConway, G., and Wilson, K. 2012. One Billion Hungry: Can We Feed the World. Cornell University Press, Ithaca, NY.en_US
dc.identifier.citedreferenceConway‐Morris, S., 2003. Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceCooper, L. N., Cretekos, C. J., and Sears, K. E. 2012. The evolution and development of mammalian flight. Dev. Biol. 1 ( 5 ): 773 – 779.en_US
dc.identifier.citedreferenceCouncil, N. R. 2009. A New Biology for the 21st Century. The National Academies Press, Washington, DC.en_US
dc.identifier.citedreferenceCreanza, N., Fogarty, L., and Feldman, M. W. 2012. Models of cultural niche construction with selection and assortative mating. PLoS ONE 7 ( 8 ): e2744.en_US
dc.identifier.citedreferenceCrispo, E. 2007. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution Int. J. Org. Evolution 61 ( 11 ): 2469 – 2479.en_US
dc.identifier.citedreferenceCohn, M. J. 1999. Developmental basis of limblessness and axial patterning in snakes. Nature 399: 474 – 479.en_US
dc.identifier.citedreferenceDamen, W. G. 2002. Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129 ( 5 ): 1239 – 1250.en_US
dc.identifier.citedreferenceDangl, J. L., Horvath, D. M., and Staskawicz, B. J. 2013. Pivoting the plant immune system from dissection to deployment. Science 341 ( 6147 ): 746 – 751.en_US
dc.identifier.citedreferenceDarwin, C. 1859. On the Origin of Species by Means of Natural Selection. Grant Richards, London. Original edition.en_US
dc.identifier.citedreferenceDarwin, C. 1868. The Variation of Animals and Plants Under Domestication. John Murray, London.en_US
dc.identifier.citedreferenceDarwin, C. 1871. The descent of man and selection in relation to sex. In B. A. Cerf and D. S. Klopper (eds.). The Modern Library of the World's Best Books. The Modern Library, New York. Original edition.en_US
dc.identifier.citedreferenceDavidson, E. H., et al. 2002. A genomic regulatory network for development. Science 295 ( 5560 ): 1669 – 1678.en_US
dc.identifier.citedreferencede Bossoreille de Ribou, S., Douam, F., Hamant, O., Frohlich, M. W., and Negrutiu, I. 2013. Plant science and agricultural productivity: why are we hitting the yield ceiling? Plant Sci. 210: 159 – 176.en_US
dc.identifier.citedreferencede Bruijn, S., Angenent, G. C., and Kaufmann, K. 2012. Plant 'evo‐devo' goes genomic: from candidate genes to regulatory networks. Trends Plant Sci. 17 ( 8 ): 441 – 447.en_US
dc.identifier.citedreferenceDe Robertis, E. M. 2008. Evo‐devo: variations on ancestral themes. Cell 132 ( 2 ): 185 – 195.en_US
dc.identifier.citedreferenceDennis, M. Y., et al. 2012. Evolution of human‐specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149 ( 4 ): 912 – 922.en_US
dc.identifier.citedreferenceDermauw, W., et al. 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc. Natl. Acad. Sci. USA 110 ( 2 ): E113 – E122.en_US
dc.identifier.citedreferenceDias, B. G., and Ressler, K. J. 2014. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17 ( 1 ): 89 – 96.en_US
dc.identifier.citedreferenceDickinson, D. J., Ward, J. D., Reiner, D. J., and Goldstein, B. 2013. Engineering the Caenorhabditis elegans genome using Cas9‐triggered homologous recombination. Nat. methods 10 ( 10 ): 1028 – 1034.en_US
dc.identifier.citedreferenceDi‐Poï, N., Montoya‐Burgos, J. I., Miller, H., Pourquié, O., Milinkovitch, M. C., and Duboule, D. 2010. Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature 464: 99 – 103.en_US
dc.identifier.citedreferenceDoroba, C. K., and Sears, K. E. 2010. The divergent development of the apical ectodermal ridge in the marsupial Monodelphis domestica. Anat. Rec. 293: 1325 – 1332.en_US
dc.identifier.citedreferenceDraghi, J. A., Parsons, T. L., Wagner, G. P., and Plotkin, J. B. 2010. Mutational robustness can facilitate adaptation. Nature 463 ( 7279 ): 353 – 355.en_US
dc.identifier.citedreferenceEldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B. Z., and Barkai, N. 2002. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419 ( 6904 ): 304 – 308.en_US
dc.identifier.citedreferenceEmlen, D. J., Hunt, J., and Simmons, L. W. 2005. Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary lability, and constraint. Am. Nat. 166 ( Suppl 4 ): S42 – S68.en_US
dc.identifier.citedreferenceEttensohn, C. A. 2009. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136 ( 1 ): 11 – 21.en_US
dc.identifier.citedreferenceEwen‐Campen, B., Srouji, J. R., Schwager, E. E., and Extavour, C. G. 2012. oskar predates the evolution of germ plasm in insects. Curr. Biol. 22 ( 23 ): 2278 – 2283.en_US
dc.identifier.citedreferenceFalconer, D. S., and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. 4th ed. Prentice Hall, London.en_US
dc.identifier.citedreferenceFelix, M. A., and Barkoulas, M. 2012. Robustness and flexibility in nematode vulva development. Trends Genet. 28 ( 4 ): 185 – 195.en_US
dc.identifier.citedreferenceFenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., and Thomson, J. D. 2004. Pollination syndromes and floral specialization. Ann. Rev. Ecol. Evol. Syst. 35 ( 1 ): 375 – 403.en_US
dc.identifier.citedreferenceFonseca, R. N., Lynch, J. A., and Roth, S. 2009. Evolution of axis formation: mRNA localization, regulatory circuits and posterior specification in non‐model arthropods. Curr. Opin. Genet. Dev. 19 ( 4 ): 404 – 411.en_US
dc.identifier.citedreferenceFontana, W., 1993. “The arrival of the fittest”: toward a theory of biological organization. Bull. Math. Biol. 56 ( 1 ): 1 – 64.en_US
dc.identifier.citedreferenceFriedman, W. E., and Diggle, P. K. 2011. Charles Darwin and the origins of plant evolutionary developmental biology. Plant Cell 23 ( 4 ): 1194 – 1207.en_US
dc.identifier.citedreferenceFritz, J. A., et al. 2014. Shared developmental programme strongly constrains beak shape diversity in songbirds. Nat. Commun. 5: 3700.en_US
dc.identifier.citedreferenceGaspar, P., Cases, O., and Maroteaux, L. 2003. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4 ( 12 ): 1002 – 1012.en_US
dc.identifier.citedreferenceGavin‐Smyth, J., Wang, Y. C., Butler, I., and Ferguson, E. L. 2013. A genetic network conferring canalization to a bistable patterning system in Drosophila. Curr. Biol. 23 ( 22 ): 2296 – 2302.en_US
dc.identifier.citedreferenceGehring, W. J. 2011. Chance and necessity in eye evolution. Genome Biol. Evol. 3: 1053 – 1066.en_US
dc.identifier.citedreferenceGehring, W. J., Kloter, U., and Suga, H. 2009. Evolution of the Hox gene complex from an evolutionary ground state. Curr. Top. Dev. Biol. 88: 35 – 61.en_US
dc.identifier.citedreferenceGerhart, J., and Kirschner, M. 2007. The theory of facilitated variation. Proc Natl Acad Sci USA 104: 8582 – 8589.en_US
dc.identifier.citedreferenceGilbert, S. F. 2003. Opening Darwin's black box: teaching evolution through developmental genetics. Nat. Rev. Genet. 4 ( 9 ): 735 – 741.en_US
dc.identifier.citedreferenceGilbert, S. F., Cebra‐Thomas, J. A., and Burke, A. C. 2007. How the turtle gets its shell. In J. Wyneken (ed.). Biology of Turtles: Structures to Strategies, CRC Press, Boca Raton.en_US
dc.identifier.citedreferenceGilbert, S. F., and Bolker, J. A. 2001. Homologies of process and modular elements of embryonic construction. J. Exp. Zool. 291 ( 1 ): 1 – 12.en_US
dc.identifier.citedreferenceGilbert, S. F., and Epel, D. 2009. Ecological Developmental Biology: Integrating Epigenetics, Medicine, and Evolution. Sinauer Associates, Inc., Sunderland.en_US
dc.identifier.citedreferenceGilbert, S. F., Sapp, J., and Tauber, A. I. 2012. A symbiotic view of life: we have never been individuals. Q. Rev. Biol. 87 ( 4 ): 325 – 341.en_US
dc.identifier.citedreferenceParichy, D. M. 2006. Evolution of danio pigment pattern development. Heredity 97 ( 3 ): 200 – 210.en_US
dc.identifier.citedreferenceGluckman, P. D., et al. 2009. Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet 373 ( 9675 ): 1654 – 1657.en_US
dc.identifier.citedreferenceGodfray, H. C., et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327 ( 5967 ): 812 – 818.en_US
dc.identifier.citedreferenceGompel, N., and Carroll, S. B. 2003. Genetic mechanisms and constraints governing the evolution of correlated traits in drosophilid flies. Nature 424 ( 6951 ): 931 – 935.en_US
dc.identifier.citedreferenceGompel, N., and Prud'homme, B. 2009. The causes of repeated genetic evolution. Dev. Biol. 332 ( 1 ): 36 – 47.en_US
dc.identifier.citedreferenceGompel, N., Prud'homme, B., Wittkopp, P. J., Kassner, V. A., and Carroll, S. B. 2005. Chance caught on the wing: cis‐regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433 ( 7025 ): 481 – 487.en_US
dc.identifier.citedreferenceGonczy, P., and Rose, L. S. 2005. Asymmetric cell division and axis formation in the embryo. WormBook 1 – 20. WormBook, ed. The C. elegans Research Community, WormBook, doi: 10.1895/wormbook.1.7.1, http://www.wormbook.org.en_US
dc.identifier.citedreferenceGould, S. J. 1977. Ontogeny and Phylogeny. The Belknap Press of Harvard University Press, Cambridge, MA.en_US
dc.identifier.citedreferenceGrassini, P., Eskridge, K. M., and Cassman, K. G. 2013. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4: 2918.en_US
dc.identifier.citedreferenceGreen, D. A., II, and Extavour, C. G. 2012. Convergent evolution of a reproductive trait through distinct developmental mechanisms in Drosophila. Dev. Biol. 372 ( 1 ): 120 – 130.en_US
dc.identifier.citedreferenceHajihosseini, M. K., Wilson, S., De Moerlooze, L., and Dickson, C. 2001. A splicing switch and gain‐of‐function mutation in FgfR2‐IIIc hemizygotes causes Apert/Pfeiffer‐syndrome‐like phenotypes. Proc. Natl. Acad. Sci. USA 98 ( 7 ): 3855 – 3860.en_US
dc.identifier.citedreferenceHall, B. K. 2012. Evolutionary developmental biology (evo‐devo): past, present, and future. Evol. Educ. Outreach 5 ( 2 ): 184 – 193.en_US
dc.identifier.citedreferenceHallgrimsson, B., et al. 2009. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36 ( 4 ): 355 – 376.en_US
dc.identifier.citedreferenceHarden, K. P., Hill, J. E., Turkheimer, E., and Emery, R. E. 2008. Gene‐environment correlation and interaction in peer effects on adolescent alcohol and tobacco use. Behav. Genet. 38: 339 – 347.en_US
dc.identifier.citedreferenceHardoim, P. R., van Overbeek, L. S., and Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16 ( 10 ): 463 – 471.en_US
dc.identifier.citedreferenceHarjunmaa, E., et al. 2014. Replaying evolutionary transitions from the dental fossil record. Nature 512: 44 – 48.en_US
dc.identifier.citedreferenceHarris, R. M., and Hofmann, H. A. 2014. Neurogenomics of behavioral plasticity. Adv. Exp. Med. Biol. 781: 149 – 168.en_US
dc.identifier.citedreferenceHead, J. J., and Polly, P. D. 2015. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature. doi: 10.1038/nature14042.en_US
dc.identifier.citedreferenceHill, W. G., and Mulder, H. A. 2010. Genetic analysis of environmental variation. Genet. Res. 92 ( 5–6 ): 381 – 395.en_US
dc.identifier.citedreferenceHolland, P. W. 2013. Evolution of homeobox genes. Dev. Biol. 2 ( 1 ): 31 – 45.en_US
dc.identifier.citedreferenceHooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., and Gordon, J. I. 2001. Molecular analysis of commensal host‐microbial relationships in the intestine. Science 291 ( 5505 ): 881 – 884.en_US
dc.identifier.citedreferenceHoule, D., Govindaraju, D. R., and Omholt, S. 2010. Phenomics: the next challenge. Nat. Rev. Genet. 11 ( 12 ): 855 – 866.en_US
dc.identifier.citedreferenceHoyos, E., et al. 2011. Quantitative variation in autocrine signaling and pathway crosstalk in the Caenorhabditis vulval network. Curr. Biol. 21 ( 7 ): 527 – 538.en_US
dc.identifier.citedreferenceHrvoj‐Mihic, B., Bienvenu, T., Stefanacci, L., Muotri, A. R., and Semendeferi, K. 2013. Evolution, development, and plasticity of the human brain: from molecules to bones. Front. Hum. Neurosci. 7: 707.en_US
dc.identifier.citedreferenceHubbard, J. K., Uy, J. A., Hauber, M. E., Hoekstra, H. E., and Safran, R. J. 2010. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet. 26 ( 5 ): 231 – 239.en_US
dc.identifier.citedreferenceHughes, M. W., et al. 2011. In search of the Golden Fleece: unraveling principles of morphogenesis by studying the integrative biology of skin appendages. Integr. Biol. 3 ( 4 ): 388 – 407.en_US
dc.identifier.citedreferenceHuh, I., Zeng, J., Park, T., and Yi, S. V. 2013. DNA methylation and transcriptional noise. Epigenet. Chromatin 6 ( 1 ): 9.en_US
dc.identifier.citedreferenceIngolia, N. T. 2004. Topology and robustness in the Drosophila segment polarity network. PLoS Biol. 2 ( 6 ): e123.en_US
dc.identifier.citedreferenceInomata, H., Shibata, T., Haraguchi, T., and Sasai, Y. 2013. Scaling of dorsal‐ventral patterning by embryo size‐dependent degradation of Spemann's organizer signals. Cell 153 ( 6 ): 1296 – 1311.en_US
dc.identifier.citedreferenceJacob, F. 1977. Evolution and tinkering. Science 196 ( 4295 ): 1161 – 1166.en_US
dc.identifier.citedreferenceJaeger, J., et al. 2004. Dynamic control of positional information in the early Drosophila embryo. Nature 430 ( 6997 ): 368 – 371.en_US
dc.identifier.citedreferenceJones, F. C., et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484 ( 7392 ): 55 – 61.en_US
dc.identifier.citedreferenceJoung, J. K., and Sander, J. D. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14 ( 1 ): 49 – 55.en_US
dc.identifier.citedreferenceJovelin, R., and Cutter, A. D. 2011. MicroRNA sequence variation potentially contributes to within‐species functional divergence in the nematode Caenorhabditis briggsae. Genetics 189 ( 3 ): 967 – 976.en_US
dc.identifier.citedreferenceKalaitzandonakes, N., Alston, J. M., and Bradford, K. J. 2007. Compliance costs for regulatory approval of new biotech crops. Nat. Biotechnol. 25 ( 5 ): 509 – 511.en_US
dc.identifier.citedreferenceKarim, M. S., Buzzard, G. T., and Umulis, D. M. 2012. Secreted, receptor‐associated bone morphogenetic protein regulators reduce stochastic noise intrinsic to many extracellular morphogen distributions. J. R. Soc. Interface 9 ( 70 ): 1073 – 1083.en_US
dc.identifier.citedreferenceKavanagh, K. D., Evans, A. R., and Jernvall, J. 2007. Predicting evolutionary patterns of mammalian teeth from development. Nature 449: 427 – 432.en_US
dc.identifier.citedreferenceKerr, B., Schwilk, D. W., Bergman, A., and Feldman, M. W. 1999. Rekindling an old flame: a haploid model for the evolution and impact of flammability in resprouting plants. Evol. Ecol. Res. 1 ( 7 ): 807 – 833.en_US
dc.identifier.citedreferenceKeyte, A. L., and Smith, K. K. 2010. Developmental origins of precocial forelimbs in marsupial neonates. Development 137: 4283 – 4294.en_US
dc.identifier.citedreferenceKijimoto, T., Pespeni, M., Beckers, O., and Moczek, A. P. 2013. Beetle horns and horned beetles: emerging models in developmental evolution and ecology. Dev. Biol. 2 ( 3 ): 405 – 418.en_US
dc.identifier.citedreferenceKing, M. C., and Wilson, A. C. 1975. Evolution at two levels in humans and chimpanzees. Science 188 ( 4184 ): 107 – 116.en_US
dc.identifier.citedreferenceKiontke, K., et al. 2007. Trends, stasis, and drift in the evolution of nematode vulva development. Curr. Biol. 17 ( 22 ): 1925 – 1937.en_US
dc.identifier.citedreferenceKlingenberg, C. P., 2009. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evol. Dev. 11 ( 4 ): 405 – 421.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Mebus, K., and Auffray, J. C. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible. Evol. Dev. 5 ( 5 ): 522 – 531.en_US
dc.identifier.citedreferenceKlingenberg, C. P., and Zaklan, S. D. 2000. Morphological integration between developmental compartments in the Drosophila wing. Evolution 4 ( 54 ): 1273 – 1285.en_US
dc.identifier.citedreferenceKopp, A. 2009. Metamodels and phylogenetic replication: a systematic approach to the evolution of developmental pathways. Evolution Int. J. Org. Evolution 63 ( 11 ): 2771 – 2789.en_US
dc.identifier.citedreferenceKozmik, Z. 2005. Pax genes in eye development and evolution. Curr. Opin. Genet. Dev. 15 ( 4 ): 430 – 438.en_US
dc.identifier.citedreferenceKrakauer, D. C., Page, K. M., and Erwin, D. H. 2009. Diversity, dilemmas, and monopolies of niche construction. Am. Nat. 173 ( 1 ): 26 – 40.en_US
dc.identifier.citedreferenceKrausova, M., and Korinek, V. 2014. Wnt signaling in adult intestinal stem cells and cancer. Cell. Signal. 26 ( 3 ): 570 – 579.en_US
dc.identifier.citedreferenceKronforst, M. R., et al. 2012. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res. 25 ( 4 ): 411 – 433.en_US
dc.identifier.citedreferenceKunte, K., et al. 2014. Doublesex is a mimicry supergene. Nature 507 ( 7491 ): 229 – 232.en_US
dc.identifier.citedreferenceKuratani, S., Kuraku, S., and Nagashima, H. 2011. Evolutionary The developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol. Dev. 13 ( 1 ): 1 – 14.en_US
dc.identifier.citedreferenceKylafis, G., and Loreau, M. 2008. Ecological and evolutionary consequences of niche construction for its agent. Ecol. Lett. 11 ( 10 ): 1072 – 1081.en_US
dc.identifier.citedreferenceLaland, K. N., Odling‐Smee, F. J., and Feldman, M. W. 1996. The evolutionary consequences of niche construction: a theoretical investigation using two‐locus theory. J. Evol. Biol. 9: 293 – 316.en_US
dc.identifier.citedreferenceLaland, K. N., Odling‐Smee, F. J., and Feldman, M. W. 1999. Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl. Acad. Sci. USA 96 ( 18 ): 10242 – 10247.en_US
dc.identifier.citedreferenceLaland, K. N., Odling‐Smee, J., and Feldman, M. W. 2001. Cultural niche construction and human evolution. J. Evol. Biol. 14: 22 – 33.en_US
dc.identifier.citedreferenceLaland, K, et al. 2014. Does evolutionary theory need a rethink? Nature 514: 161 – 164.en_US
dc.identifier.citedreferenceLande, R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22 ( 7 ): 1435 – 1446.en_US
dc.identifier.citedreferenceLapidot, T., et al. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367 ( 6464 ): 645 – 648.en_US
dc.identifier.citedreferenceLau, J. A., and Lennon, J. T. 2011. Evolutionary ecology of plant‐microbe interactions: soil microbial structure alters selection on plant traits. New Phytol. 192 ( 1 ): 215 – 224.en_US
dc.identifier.citedreferenceLedon‐Rettig, C. C., Pfennig, D. W., Chunco, A. J., and Dworkin, I 2014. Cryptic genetic variation in natural populations: a predictive framework. Integr. Comp. Biol. 54: 783 – 793.en_US
dc.identifier.citedreferenceLedon‐Rettig, C. C., Pfennig, D. W., and Crespi, E. J. 2010. Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proceedings. Biol. Sci. 277 ( 1700 ): 3569 – 3578.en_US
dc.identifier.citedreferenceLedon‐Rettig, C. C., Pfennig, D. W., and Nascone‐Yoder, N. 2008. Ancestral variation and the potential for genetic accommodation in larval amphibians: implications for the evolution of novel feeding strategies. Evol. Dev. 10 ( 3 ): 316 – 325.en_US
dc.identifier.citedreferenceLehmann, L. 2007. The evolution of trans‐generational altruism: kin selection meets niche construction. J. Evol. Biol. 20 ( 1 ): 181 – 189.en_US
dc.identifier.citedreferenceLehmann, L. 2008. The adaptive dynamics of niche constructing traits in spatially subdivided populations: evolving posthumous extended phenotypes. Evolution Int. J. Org. Evolution 62 ( 3 ): 549 – 566.en_US
dc.identifier.citedreferenceLemke, S., Busch, S. E., Antonopoulos, D. A., Meyer, F., Domanus, M. H., and Schmidt‐Ott, U. 2010. Maternal activation of gap genes in the hover fly Episyrphus. Development 137 ( 10 ): 1709 – 1719.en_US
dc.identifier.citedreferenceLewontin, R. C. 1983. Gene, organism and environment. In D. S. Bendall (ed.). Evolution From Molecules to Men. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceLexer, C., Welch, M. E., Durphy, J. L., and Rieseberg, L. H. 2003. Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol. Ecol. 12 ( 5 ): 1225 – 1235.en_US
dc.identifier.citedreferenceLocascio, A., Manzanares, M., Blanco, M. J., and Nieto, M. A. 2002. Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc. Natl. Acad. Sci. USA 99 ( 26 ): 16841 – 16846.en_US
dc.identifier.citedreferenceLosos, J. B. 2011. Convergence, adaptation, and constraint. Evolution Int. J. Org. Evolution 65 ( 7 ): 1827 – 1840.en_US
dc.identifier.citedreferenceLove, A. C. 2013. Interdisciplinary lessons for the teaching of biology from the practice of evo‐devo. Sci. Educ. 22 ( 2 ): 255 – 278.en_US
dc.identifier.citedreferenceLu, J. 2008. Adaptive evolution of newly emerged micro‐RNA genes in Drosophila. Mol. Biol. Evol. 25 ( 5 ): 929 – 938.en_US
dc.identifier.citedreferenceLundberg, D. S., et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488 ( 7409 ): 86 – 90.en_US
dc.identifier.citedreferenceLuo, Z. X. 2014. Evolution: tooth structure re‐engineered. Nature 512: 36 – 37.en_US
dc.identifier.citedreferenceLynch, J. A., Peel, A. D., Drechsler, A., Averof, M., and Roth, S. 2010. EGF signaling and the origin of axial polarity among the insects. Curr. Biol. 20 ( 11 ): 1042 – 1047.en_US
dc.identifier.citedreferenceLynch, J. A., and Roth, S. 2011. The evolution of dorsal‐ventral patterning mechanisms in insects. Genes Dev. 25 ( 2 ): 107 – 118.en_US
dc.identifier.citedreferenceLynch, M., and Conery, J. S. 2000. The evolutionary fate and consequences of duplicate genes. Science 290 ( 5494 ): 1151 – 1155.en_US
dc.identifier.citedreferenceLynch, M., and Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc., Sunderland.en_US
dc.identifier.citedreferenceLyson, T. R., et al. 2013a. Homology of the enigmatic nuchal bone reveals novel reorganization of the shoulder girdle in the evolution of the turtle shell. Evol. Dev. 15: 317 – 325.en_US
dc.identifier.citedreferenceLyson, T. R., Bever, G. S., Scheyer, T. M., Hsiang, A. Y., and Gauthier, J. A. 2013b. Evolutionary origin of the turtle shell. Curr. Biol. 23: 1113 – 1119.en_US
dc.identifier.citedreferenceMabee, P. M., Olmstead, K. L., and Cubbage, C. C. 2000. An experimental study of intraspecific variation, developmental timing, and heterochrony in fishes. Evolution Int. J. Org. Evolution 54 ( 6 ): 2091 – 2106.en_US
dc.identifier.citedreferenceMaduro, M. F. 2006. Endomesoderm specification in Caenorhabditis elegans and other nematodes. BioEssays 28 ( 10 ): 1010 – 1022.en_US
dc.identifier.citedreferenceMallo, M., Wellik, D. M., and Deschamps, J. 2010. Hox genes and regional patterning of the vertebrate body plan. Dev. Biol. 344: 7 – 15.en_US
dc.identifier.citedreferenceManceau, M., Domingues, V. S., Linnen, C. R., Rosenblum, E. B., and Hoekstra, H. E. 2010. Convergence in pigmentation at multiple levels: mutations, genes and function. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 365 ( 1552 ): 2439 – 50.en_US
dc.identifier.citedreferenceManu, Surkova S., Spirov, A. V., Gursky, V. V., Janssens, H., Kim, A. R., Radulescu, O., Vanario‐Alonso, C. E., Sharp, D. H., Samsonova, M., and Reinitz, J. 2009. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation. PLoS Biol. 7 ( 3 ): e1000049.en_US
dc.identifier.citedreferenceMartin, A., et al. 2012. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl. Acad. Sci. USA 109 ( 31 ): 12632 – 12637.en_US
dc.identifier.citedreferenceMartinez Arias, A., Nichols, J., and Schroter, C. 2013. A molecular basis for developmental plasticity in early mammalian embryos. Development 140 ( 17 ): 3499 – 3510.en_US
dc.identifier.citedreferenceMathew, P. 1831. Naval Timbers and Arboriculture. Adam Black, Edinburgh.en_US
dc.identifier.citedreferenceMathews, T. J., and MacDorman, M. F. 2013. Infant mortality statistics from the 2009 period: linked birth/infant death data set. Natl. Vital Stat. Rep. 61 ( 8 ): 1 – 27.en_US
dc.identifier.citedreferenceMattick, J. S. 2007. A new paradigm for developmental biology. J. Exp. Biol. 210 ( Pt 9 ): 1526 – 1547.en_US
dc.identifier.citedreferenceMatus, D. Q., Chang, E., Makohon‐Moore, S. C., Hagedorn, M. A., Chi, Q., and Sherwood, D. R. 2014. Cell division and targeted cell cycle arrest opens and stabilizes basement membrane gaps. Nat. Commun. 5: 4184.en_US
dc.identifier.citedreferenceMavrogiannis, L. A., et al. 2001. Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nat. Genet. 27 ( 1 ): 17 – 18.en_US
dc.identifier.citedreferenceMazmanian, S. K., Liu, C. H., Tzianabos, A. O., and Kasper, D. L. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122 ( 1 ): 107 – 118.en_US
dc.identifier.citedreferenceMcCauley, B. S., Weideman, E. P., and Hinman, V. F. 2010. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev. Biol. 340 ( 2 ): 200 – 208.en_US
dc.identifier.citedreferenceMcFall‐Ngai, M., et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110 ( 9 ): 3229 – 3236.en_US
dc.identifier.citedreferenceMcGhee, G. 2011. Convergent Evolution: Limited Forms Most Beautiful. MIT Press., Cambridge.en_US
dc.identifier.citedreferenceMcGregor, A. P., et al. 2007. Morphological evolution through multiple cis‐regulatory mutations at a single gene. Nature 448 ( 7153 ): 587 – 590.en_US
dc.identifier.citedreferenceMcLean, C. Y., et al. 2011. Human‐specific loss of regulatory DNA and the evolution of human‐specific traits. Nature 471 ( 7337 ): 216 – 219.en_US
dc.identifier.citedreferenceMeyer, K. 2009. Factor‐analytic models for genotype x environment type problems and structured covariance matrices. Genet. Sel. Evol. 41: 21.en_US
dc.identifier.citedreferenceMeyer, R. S., and Purugganan, M. D. 2013. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14 ( 12 ): 840 – 852.en_US
dc.identifier.citedreferenceMinelli, A. 2009. Phylo‐evo‐devo: combining phylogenetics with evolutionary developmental biology. BMC Biol. 7: 36.en_US
dc.identifier.citedreferenceMitchell, T. S., Maciel, J. A., and Janzen, F. J. 2013. Does sex‐ratio selection influence nest‐site choice in a reptile with temperature‐dependent sex determination? Proc. Biol. Sci. 280 ( 1772 ): 20132460.en_US
dc.identifier.citedreferenceMizutani, C. M., and Bier, E. 2008. EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat. Rev. Genet. 9 ( 9 ): 663 – 677.en_US
dc.identifier.citedreferenceMoczek, A. P. 2012. The nature of nurture and the future of evodevo: toward a theory of developmental evolution. Integr. Comp. Biol. 52 ( 1 ): 108 – 119.en_US
dc.identifier.citedreferenceMoczek, A. P. 2015. Re‐evaluating the environment in developmental evolution. Front. Ecol. Evol. 05 February. doi: 10.3389/fevo.2015.00007.en_US
dc.identifier.citedreferenceMoczek, A. P., and Rose, D. J. 2009. Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc. Natl. Acad. Sci. USA 106 ( 22 ): 8992 – 8997.en_US
dc.identifier.citedreferenceMohammed, J., Flynt, A. S., Siepel, A., and Lai, E. C. 2013. The impact of age, biogenesis, and genomic clustering on Drosophila microRNA evolution. RNA 19 ( 9 ): 1295 – 1308.en_US
dc.identifier.citedreferenceMonteiro, A., and Podlaha, O. 2009. Wings, horns, and butterfly eyespots: how do complex traits evolve. PLoS Biol. 7 ( 2 ): e37.en_US
dc.identifier.citedreferenceMoran, N. A., McCutcheon, J. P., and Nakabachi, A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42: 165 – 190.en_US
dc.identifier.citedreferenceMoustakas‐Verho, J. E., et al. 2014. The origin and loss of periodic patterning in the turtle shell. Development 141: 3033 – 3039.en_US
dc.identifier.citedreferenceNagashima, H., et al. 2013. Origin of the unique morphology of the shoulder girdle in turtles. J. Anat. 223: 547 – 556.en_US
dc.identifier.citedreferenceNeckameyer, W. S. 2010. A trophic role for serotonin in the development of a simple feeding circuit. Dev. Neurosci. 32 ( 3 ): 217 – 237.en_US
dc.identifier.citedreferenceNeckameyer, W. S., and Bhatt, P. 2012. Neurotrophic actions of dopamine on the development of a serotonergic feeding circuit in Drosophila melanogaster. BMC Neurosci. 13: 26.en_US
dc.identifier.citedreferenceNieto, M. A. 2013. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342 ( 6159 ): 1234850.en_US
dc.identifier.citedreferenceNijhout, H. F. 1991. The Development and Evolution of Butterfly Wing Patterns, Smithsonian Series in Comparative Evolutionary Biology. Smithsonian Institution Scholarly Press, Washington.en_US
dc.identifier.citedreferenceNijhout, H. F. 2003. Development and evolution of adaptive polyphenisms. Evol. Dev. 5 ( 1 ): 9 – 18.en_US
dc.identifier.citedreferenceNishinakamura, R., et al. 2001. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128 ( 16 ): 3105 – 3115.en_US
dc.identifier.citedreferenceNoordermeer, D., and Duboule, D. 2013. Chromatin architectures and Hox gene collinearity. Curr. Top. Dev. Biol. 104: 113 – 148.en_US
dc.identifier.citedreferenceOdling‐Smee, J. 2010. Niche inheritance. In M. Pigliucci and G. Müller (eds.). Evolution: The Extended Synthesis. The MIT Press, Cambridge.en_US
dc.identifier.citedreferenceOhno, S. 1970. Evolution by Gene Duplication. Springer Verlag, New York.en_US
dc.identifier.citedreferenceOlson, M. E. 2012. The developmental renaissance in adaptationism. Trends Ecol. 27 ( 5 ): 278 – 287.en_US
dc.identifier.citedreferenceOwen, R. 1843. Lectures on the Comparative Anatomy and Physiology of the Vertebrate Animals, Delivered at the Royal College of Surgeons, In 1843. Longman, Brown, Green, and Longmans, London.en_US
dc.identifier.citedreferencePanfilio, K. A., and Roth, S. 2013. Development: getting into the groove, or evolving off the rails. Curr. Biol. 23 ( 24 ): R1101 – R1103.en_US
dc.identifier.citedreferencePannebakker, B. A., Loppin, B., Elemans, C. P., Humblot, L., and Vavre, F. 2007. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl. Acad. Sci. USA 104 ( 1 ): 213 – 215.en_US
dc.identifier.citedreferenceParsons, K. J., and Albertson, R. C. 2009. Roles for Bmp4 and CaM1 in shaping the jaw: evo‐devo and beyond. Annu. Rev. Genet. 43: 369 – 388.en_US
dc.identifier.citedreferenceParsons, K. J., and Albertson, R. C. 2014. From black and white to shades of gray: unifying evo‐devo through the integration of molecular and quantitative approaches. In J. T. Streelman (ed.). Advances in Evolutionary Developmental Biology. John Wiley &. Sons, Hoboken, NJ.en_US
dc.identifier.citedreferencePavlopoulos, A., et al. 2009. Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc. Natl. Acad. Sci. USA 106 ( 33 ): 13897 – 13902.en_US
dc.identifier.citedreferencePearson, J. C., Lemons, D., and McGinnis, W. 2005. Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6 ( 12 ): 893 – 904.en_US
dc.identifier.citedreferencePeter, I. S., Faure, E., and Davidson, E. H. 2012. Predictive computation of genomic logic processing functions in embryonic development. Proc. Natl. Acad. Sci. USA 109 ( 41 ): 16434 – 16442.en_US
dc.identifier.citedreferencePfennig, D. W., Wund, M. A., Snell‐Rood, E. C., Cruickshank, T., Schlichting, C. D., and Moczek, A. P. 2010. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. (Amst) 25 ( 8 ): 459 – 467.en_US
dc.identifier.citedreferencePlouhinec, J. L., and De Robertis, E. M. 2009. Systems biology of the self‐regulating morphogenetic gradient of the Xenopus gastrula. Cold Spring Harb. Perspect. Biol. 1 ( 2 ): a001701.en_US
dc.identifier.citedreferenceProtas, M. E., et al. 2006. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat. Genet. 38 ( 1 ): 107 – 111.en_US
dc.identifier.citedreferencePrusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D., and Coen, E. 2007. Evolution and development of inflorescence architectures. Science 316 ( 5830 ): 1452 – 1456.en_US
dc.identifier.citedreferenceRaff, R. A. 2000. Evo‐devo: the evolution of a new discipline. Nat. Rev. Genet. 1 ( 1 ): 74.en_US
dc.identifier.citedreferenceRaff, R. A. 2007. Written in stone: fossils, genes, and evo‐devo. Nat. Rev. Genet. 8: 911 – 920.en_US
dc.identifier.citedreferenceRafferty, N. E., Caradonna, P. J., Burkle, L. A., Iler, A. M., and Bronstein, J. L. 2013. Phenological overlap of interacting species in a changing climate: an assessment of available approaches. Ecol. Evol. 3 ( 9 ): 3183 – 3193.en_US
dc.identifier.citedreferenceRajakumar, R., and Abouheif, E. 2014. Ancestral Developmental Potential: a new tool for animal breeding? Proceeding of the 62nd Annual National Breeders Roundtable in press 1 – 13.en_US
dc.identifier.citedreferenceRajakumar, R., et al. 2012. Ancestral developmental potential facilitates parallel evolution in ants. Science 335 ( 6064 ): 79 – 82.en_US
dc.identifier.citedreferenceRawls, J. F., Samuel, B. S., and Gordon, J. I. 2004. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101 ( 13 ): 4596 – 4601.en_US
dc.identifier.citedreferenceReale, D., McAdam, A. G., Boutin, S., and Berteaux, D. 2003. Genetic and plastic responses of a northern mammal to climate change. Proc. Biol. Sci. 270 ( 1515 ): 591 – 596.en_US
dc.identifier.citedreferenceReed, T. E., Schindler, D. E., and Waples, R. S. 2011. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25 ( 1 ): 56 – 63.en_US
dc.identifier.citedreferenceRensing, S. A. 2014. Gene duplication as a driver of plant morphogenetic evolution. Curr. Opi. Plant Biol. 17: 43 – 48.en_US
dc.identifier.citedreferenceRezza, A., Sennett, R., and Rendl, M. 2014. Adult stem cell niches: cellular and molecular components. Curr. Top. Dev. Biol. 107: 333 – 372.en_US
dc.identifier.citedreferenceRichards, C. L., Rosas, U., Banta, J., Bhambhra, N., and Purugganan, M. D. 2012. Genome‐wide patterns of Arabidopsis gene expression in nature. PLoS Genet. 8 ( 4 ): e1002662.en_US
dc.identifier.citedreferenceRichards, C. L., Schrey, A. W., and Pigliucci, M. 2012. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15 ( 9 ): 1016 – 1025.en_US
dc.identifier.citedreferenceRieseberg, L. H., Widmer, A., Arntz, A. M., and Burke, J. M. 2002. Directional selection is the primary cause of phenotypic diversification. Proc. Natl. Acad. Sci. USA 99 ( 19 ): 12242 – 12245.en_US
dc.identifier.citedreferenceRieppel, O. 2001. Turtles as hopeful monsters. Bioessays 23: 987 – 991.en_US
dc.identifier.citedreferenceRodrigues, H. G., et al. 2013. Roles of dental development and adaptation in rodent evolution. Nat. Commun. 4: 2504.en_US
dc.identifier.citedreferenceRodriguez, R. J., et al. 2008. Stress tolerance in plants via habitat‐adapted symbiosis. ISME J. 2 ( 4 ): 404 – 416.en_US
dc.identifier.citedreferenceRohner, N., et al. 2013. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342 ( 6164 ): 1372 – 1375.en_US
dc.identifier.citedreferenceRomano, L. A., and Wray, G. A. 2003. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans‐acting components of transcriptional regulation. Development 130 ( 17 ): 4187 – 4199.en_US
dc.identifier.citedreferenceRoth, S. 2011. Mathematics and biology: a Kantian view on the history of pattern formation theory. Dev. Genes Evol. 221 ( 5–6 ): 255 – 279.en_US
dc.identifier.citedreferenceRubin, L. L., and de Sauvage, F. J. 2006. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov. 5 ( 12 ): 1026 – 1033.en_US
dc.identifier.citedreferenceRuden, D. M. 2011. The (new) new synthesis and epigenetic capacitors of morphological evolution. Nat. Genet. 43 ( 2 ): 88 – 89.en_US
dc.identifier.citedreferenceRutherford, A. L., and Lindquist, S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396: 336 – 342.en_US
dc.identifier.citedreferenceSaenko, S. V., French, V., Brakefield, P. M., and Beldade, P. 2008. Conserved developmental processes and the formation of evolutionary novelties: examples from butterfly wings. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363 ( 1496 ): 1549 – 1555.en_US
dc.identifier.citedreferenceSalazar‐Ciudad, I., and Jernvall, J. 2010. A computational model of teeth and the developmental origins of morphological variation. Nature 464 ( 7288 ): 583 – 586.en_US
dc.identifier.citedreferenceSalinas‐Saavedra, M., Gonzalez‐Cabrera, C., Ossa‐Fuentes, L., Botelho, J. F., Ruiz‐Flores, M., and Vargas, A. O. 2014. New developmental evidence supports a homeotic frameshift of digit identity in the evolution of the bird wing. Front Zool. 11: 33.en_US
dc.identifier.citedreferenceSaltz, J. B., and Nuzhdin, S. V. 2014. Genetic variation in niche construction: implications for development and evolutionary genetics. Trends Ecol. Evol. 29: 8 – 14.en_US
dc.identifier.citedreferenceSánchez, M. 2012. Embryos in Deep Time: The Rock Record of Biological Development. U. California Press, Berkeley.en_US
dc.identifier.citedreferenceSchierenberg, E. 2005. Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications. Dev. Genes Evol. 215 ( 2 ): 103 – 108.en_US
dc.identifier.citedreferenceSchierenberg, E., and Sommer, R. J. 2013. Reproduction and development in nematodes. In A. Schmidt‐Rhaesa (ed.). Handbook of Zoology. De Gruyer, Berlin.en_US
dc.identifier.citedreferenceSchlichting, C. D., and Wund, M. A. 2014. Phenotypic plasticity and epigenetic marking: as assessment of evidence for genetic accommodation. Evolution 68 ( 3 ): 656 – 672.en_US
dc.identifier.citedreferenceScotland, R. W. 2010. Deep homology: a view from systematics. BioEssays 32 ( 5 ): 438 – 449.en_US
dc.identifier.citedreferenceScoville, A. G., and Pfrender, M. E. 2010. Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc. Natl. Acad. Sci. USA 107 ( 9 ): 4260 – 4263.en_US
dc.identifier.citedreferenceShapiro, M. D., Bell, M. A., and Kingsley, D. M. 2006. Parallel genetic origins of pelvic reduction in vertebrates. Proc. Natl. Acad. Sci. USA 103 ( 37 ): 13753 – 13758.en_US
dc.identifier.citedreferenceShapiro, M. D., et al. 2004. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428 ( 6984 ): 717 – 723.en_US
dc.identifier.citedreferenceSharma, B., Yant, L., Hodges, S. A., and Kramer, E. M. 2014. Understanding the development and evolution of novel floral form in Aquilegia. Curr. Opin. Plant Biol. 17: 22 – 27.en_US
dc.identifier.citedreferenceSharma, T., and Ettensohn, C. A. 2011. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Development 138 ( 12 ): 2581 – 2590.en_US
dc.identifier.citedreferenceShomrat, T., and Levin, M. 2013. An automated training paradigm reveals long‐term memory in planarians and its persistence through head regeneration. J. Exp. Biol. 216 ( Pt 20 ): 3799 – 3810.en_US
dc.identifier.citedreferenceShubin, N., Tabin, C., and Carroll, S. 2009. Deep homology and the origins of evolutionary novelty. Nature 457 ( 7231 ): 818 – 823.en_US
dc.identifier.citedreferenceShubin, N. H., Daeschler, E. B., and Jenkins, F. A., Jr. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440: 764 – 771.en_US
dc.identifier.citedreferenceSilver, M., and Di Paolo, E. 2006. Spatial effects favour the evolution of niche construction. Theor. Popul. Biol. 70 ( 4 ): 387 – 400.en_US
dc.identifier.citedreferenceSmallhorn, M., Murray, M. J., and Saint, R. 2004. The epithelial‐mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble. Development 131 ( 11 ): 2641 – 2651.en_US
dc.identifier.citedreferenceSmith, J., and Davidson, E. H. 2009. Regulative recovery in the sea urchin embryo and the stabilizing role of fail‐safe gene network wiring. Proc. Natl. Acad. Sci. USA 106 ( 43 ): 18291 – 18296.en_US
dc.identifier.citedreferenceSmith, M. I., et al. 2013. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339 ( 6119 ): 548 – 554.en_US
dc.identifier.citedreferenceSnell‐Rood, E. C., Van Dyken, J. D., Cruickshank, T., Wade, M. J., and Moczek, A. P., 2010. Toward a population genetic framework of developmental evolution: the costs, limits, and consequences of phenotypic plasticity. BioEssays 32 ( 1 ): 71 – 81.en_US
dc.identifier.citedreferenceSodhi, M. S., and Sanders‐Bush, E. 2004. Serotonin and brain development. Int. Rev. Neurobiol. 59: 111 – 174.en_US
dc.identifier.citedreferenceSommer, R. J., and Bumbarger, D. J. 2012. Nematode model systems in evolution and development. Dev. Biol. 1 ( 3 ): 389 – 400.en_US
dc.identifier.citedreferenceSong, Z., et al. 2011. Sonic hedgehog pathway is essential for maintenance of cancer stem‐like cells in human gastric cancer. PLoS ONE 6 ( 3 ): 17687.en_US
dc.identifier.citedreferenceSt. Johnston, D., and Nüsslein‐Volhard, C. 1992. The origin of pattern and polarity in the Drosophila embryo. Cell 68: 201 – 219.en_US
dc.identifier.citedreferenceStanden, E. M., Du, T. Y., and Larsson, H. C. 2014. Developmental plasticity and the origin of tetrapods. Nature 513: 54 – 58.en_US
dc.identifier.citedreferenceStappenbeck, T. S., Hooper, L. V., and Gordon, J. I. 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 99 ( 24 ): 15451 – 15455.en_US
dc.identifier.citedreferenceSteiner, C. C., Römpler, H., Boettger, L. M., Schöneberg, T., and Hoekstra, H. E. 2009. The genetic basis of phenotypic convergence in beach mice: similar pigment patterns but different genes. Mol. Biol. Evol. 26 ( 1 ): 35 – 45.en_US
dc.identifier.citedreferenceSternberg, P. W. 2005. Vulval development. WormBook: the online review of C elegans biology: 1‐28.en_US
dc.identifier.citedreferenceStinchcombe, J. R., Weinig, C., Heath, K. D., Brock, M. T., and Schmitt, J. 2009. Polymorphic genes of major effect: consequences for variation, selection and evolution in Arabidopsis thaliana. Genetics 182 ( 3 ): 911 – 922.en_US
dc.identifier.citedreferenceSucena, E., Delon, I., Jones, I., Payre, F., and Stern, D. L. 2003. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424 ( 6951 ): 935 – 938.en_US
dc.identifier.citedreferenceSuzuki, T. K. 2013. Modularity of a leaf moth‐wing pattern and a versatile characteristic of the wing‐pattern ground plan. BMC Evol. Biol. 13: 158.en_US
dc.identifier.citedreferenceSuzuki, Y., and Nijhout, H. F. 2006. Evolution of a polyphenism by genetic accommodation. Science (New York, NY) 311 ( 5761 ): 650 – 652.en_US
dc.identifier.citedreferenceTabar, V., and Studer, L. 2014. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15 ( 2 ): 82 – 92.en_US
dc.identifier.citedreferenceTakahashi, K., and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 ( 4 ): 663 – 676.en_US
dc.identifier.citedreferenceTakahashi, K. H. 2013. Multiple capacitors for natural genetic variation in Drosophila melanogaster. Mol. Ecol. 22 ( 5 ): 1356 – 1365.en_US
dc.identifier.citedreferenceTamura, K., Nomura, N., Seki, R., Yonei‐Tamura, S., and Yokoyama, H. 2011. Embryological evidence identifies wing digits in birds as digits 1, 2, and 3. Science 331: 753 – 757.en_US
dc.identifier.citedreferenceTanaka, M., et al. 2005. Developmental genetic basis for the evolution of pelvic fin loss in the pufferfish Takifugu rubripes. Dev. Biol. 281: 227 – 239.en_US
dc.identifier.citedreferenceTanaka, K., Barmina, O., and Kopp, A. 2009. Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. Proc. Natl. Acad. Sci. USA 106 ( 12 ): 4764 – 4769.en_US
dc.identifier.citedreferenceTautz, D., and Domazet‐Loso, T. 2011. The evolutionary origin of orphan genes. Nat. Rev. Genet. 12 ( 10 ): 692 – 702.en_US
dc.identifier.citedreferenceTester, M., and Langridge, P. 2010. Breeding technologies to increase crop production in a changing world. Science 327 ( 5967 ): 818 – 822.en_US
dc.identifier.citedreferenceThewissen, J. G. M., Cooper, L. N., and Behringer, R. P. 2012. Developmental biology enriches paleontology. J. Vert. Paleont. 32: 1223 – 1234.en_US
dc.identifier.citedreferenceThewissen, J. G., Cohn, M. J., Stevens, L. S., Bajpai, S., Heyning, J., and Horton, W. E., Jr. 2006. Developmental basis for hind‐limb loss in dolphins and origin of the cetacean bodyplan. Proc. Natl. Acad. Sci. USA 103 ( 22 ): 8414 – 8418.en_US
dc.identifier.citedreferenceTian, X., et al. 2013. High‐molecular‐mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499 ( 7458 ): 346 – 349.en_US
dc.identifier.citedreferenceTirosh, I., Reikhav, S., Sigal, N., Assia, Y. and Barkai, N. 2010. Chromatin regulators as capacitors of interspecies variations in gene expression. Mol. Syst. Biol. 6: 435.en_US
dc.identifier.citedreferenceToth, A. L., and Robinson, G. E. 2007. Evo‐devo and the evolution of social behavior. Trends Genet. 23 ( 7 ): 334 – 341.en_US
dc.identifier.citedreferenceTrue, J. R., and Haag, E. S. 2001. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3 ( 2 ): 109 – 119.en_US
dc.identifier.citedreferenceTruman, R. W., et al. 2011. Probable zoonotic leprosy in the southern United States. N. Engl. J. Med. 364 ( 17 ): 1626 – 1633.en_US
dc.identifier.citedreferenceTrut, L., Oskina, I., and Kharlamova, A. 2009. Animal evolution during domestication: the domesticated fox as a model. BioEssays 31 ( 3 ): 349 – 360.en_US
dc.identifier.citedreferenceVan Dyken, J. D., and Wade, M. J., 2010. The genetic signature of conditional expression. Genetics 184 ( 2 ): 557 – 570.en_US
dc.identifier.citedreferenceVan Dyken, J. D., and Wade, M. J., 2012. Origins of altruism diversity II: Runaway coevolution of altruistic strategies via “reciprocal niche construction”. Evolution Int. J. Org. Evolution 66 ( 8 ): 2498 – 2513.en_US
dc.identifier.citedreferenceVerster, A. J., Ramani, A. K., McKay, S. J., and Fraser, A. G. 2014. Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet. 10 ( 2 ): e1004077.en_US
dc.identifier.citedreferencevon Dassow, G., Meir, E., Munro, E. M., and Odell, G. M. 2000. The segment polarity network is a robust developmental module. Nature 6792: 188 – 191.en_US
dc.identifier.citedreferenceWaddington, C. H. 1942. Canalization of development and the inheritance of acquired characters. Nature 3811: 563 – 565.en_US
dc.identifier.citedreferenceWaddington, C. H. 1953. Genetic assimilation of an acquired character. Evolution 7 ( 2 ): 118 – 126.en_US
dc.identifier.citedreferenceWaddington, C. H. 1956. Genetic assimilation of the bithorax phenotype. Evolution 10 ( 1 ): 1 – 13.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.