Show simple item record

Magnetosphere‐ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models

dc.contributor.authorVogt, Marissa F.en_US
dc.contributor.authorBunce, Emma J.en_US
dc.contributor.authorKivelson, Margaret G.en_US
dc.contributor.authorKhurana, Krishan K.en_US
dc.contributor.authorWalker, Raymond J.en_US
dc.contributor.authorRadioti, Aikaterinien_US
dc.contributor.authorBonfond, Bertranden_US
dc.contributor.authorGrodent, Denisen_US
dc.date.accessioned2015-06-01T18:52:00Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationVogt, Marissa F.; Bunce, Emma J.; Kivelson, Margaret G.; Khurana, Krishan K.; Walker, Raymond J.; Radioti, Aikaterini; Bonfond, Bertrand; Grodent, Denis (2015). "Magnetosphere‐ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models." Journal of Geophysical Research: Space Physics 120(4): 2584-2599.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111797
dc.description.abstractThe lack of global field models accurate beyond the inner magnetosphere (<30 RJ) makes it difficult to relate Jupiter's polar auroral features to magnetospheric source regions. We recently developed a model that maps Jupiter's equatorial magnetosphere to the ionosphere using a flux equivalence calculation that requires equal flux at the equatorial and ionospheric ends of flux tubes. This approach is more accurate than tracing field lines in a global field model but only if it is based on an accurate model of Jupiter's internal field. At present there are three widely used internal field models—Voyager Io Pioneer 4 (VIP4), the Grodent Anomaly Model (GAM), and VIP Anomaly Longitude (VIPAL). The purpose of this study is to quantify how the choice of an internal field model affects the mapping of various auroral features using the flux equivalence calculation. We find that different internal field models can shift the ionospheric mapping of points in the equatorial plane by several degrees and shift the magnetospheric mapping to the equator by ~30 RJ radially and by less than 1 h in local time. These shifts are consistent with differences in how well each model maps the Ganymede footprint, underscoring the need for more accurate Jovian internal field models. We discuss differences in the mapping of specific auroral features and the size and location of the open/closed field line boundary. Understanding these differences is important for the continued analysis of Hubble Space Telescope images and in planning for Juno's arrival at Jupiter in 2016.Key PointsThere are three widely used internal Jovian magnetic field modelsWe compare auroral mapping results using different field modelsMapping results can be shifted by several degrees or tens of Jovian radiien_US
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherJupiteren_US
dc.subject.otherauroraen_US
dc.subject.othermagnetosphereen_US
dc.titleMagnetosphere‐ionosphere mapping at Jupiter: Quantifying the effects of using different internal field modelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111797/1/jgra51685.pdf
dc.identifier.doi10.1002/2014JA020729en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRadioti, A., J.‐C. Gérard, D. Grodent, B. Bonfond, N. Krupp, and J. Woch ( 2008a ), Discontinuity in Jupiter's main auroral oval, J. Geophys. Res., 113, A01215, doi: 10.1029/2007JA012610.en_US
dc.identifier.citedreferenceHess, S. L. G., B. Bonfond, P. Zarka, and D. Grodent ( 2011 ), Model of the Jovian magnetic field topology constrained by the Io auroral emissions, J. Geophys. Res., 116, A05217, doi: 10.1029/2010JA016262.en_US
dc.identifier.citedreferenceHill, T. W. ( 1979 ), Inertial limit on corotation, J. Geophys. Res., 84 ( A11 ), 6554 – 6558, doi: 10.1029/JA084iA11p06554.en_US
dc.identifier.citedreferenceHill, T. W. ( 2001 ), The Jovian auroral oval, J. Geophys. Res., 106, 8101 – 8107, doi: 10.1029/2000JA000302.en_US
dc.identifier.citedreferenceJoy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and T. Ogino ( 2002 ), Probabilistic models of the Jovian magnetopause and bow shock locations, J. Geophys. Res., 107 ( A10 ), 1309, doi: 10.1029/2001JA009146.en_US
dc.identifier.citedreferenceKhurana, K. K. ( 2001 ), Influence of solar wind of Jupiter's magnetosphere deduced from currents in the equatorial plane, J. Geophys. Res., 106, 25,999 – 26,016, doi: 10.1029/2000JA000352.en_US
dc.identifier.citedreferenceKivelson, M. G., and K. K. Khurana ( 2002 ), Properties of the magnetic field in the Jovian magnetotail, J. Geophys. Res., 107 ( A8 ), 1196, doi: 10.1029/2001JA000249.en_US
dc.identifier.citedreferenceKronberg, E. A., J. Woch, N. Krupp, A. Lagg, K. K. Khurana, and K.‐H. Glassmeier ( 2005 ), Mass release at Jupiter: Substorm‐like processes in the Jovian magnetotail, J. Geophys. Res., 110, A03211, doi: 10.1029/2004JA010777.en_US
dc.identifier.citedreferenceNichols, J. D. ( 2011 ), Magnetosphere‐ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self‐consistent current sheet magnetic field model, J. Geophys. Res., 116, A10232, doi: 10.1029/2011JA016922.en_US
dc.identifier.citedreferenceNichols, J. D., J. T. Clarke, J. C. Gérard, D. Grodent, and K. C. Hansen ( 2009 ), Variation of different components of Jupiter's auroral emission, J. Geophys. Res., 114, A06210, doi: 10.1029/2009JA014051.en_US
dc.identifier.citedreferencePallier, L., and R. Prangé ( 2001 ), More about the structure of the high‐latitude Jovian aurorae, Planet. Space Sci., 49, 1159 – 1173.en_US
dc.identifier.citedreferenceRadioti, A., D. Grodent, J.‐C. Gérard, B. Bonfond, and J. T. Clarke ( 2008b ), Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter's magnetotail, Geophys. Res. Lett., 35, L03104, doi: 10.1029/2007GL032460.en_US
dc.identifier.citedreferenceRadioti, A., D. Grodent, J.‐C. Gérard, and B. Bonfond ( 2010 ), Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter, J. Geophys. Res., 115, A07214, doi: 10.1029/2009JA014844.en_US
dc.identifier.citedreferenceRadioti, A., D. Grodent, J.‐C. Gérard, M. F. Vogt, M. Lystrup, and B. Bonfond ( 2011 ), Nightside reconnection at Jupiter: Auroral and magnetic field observations from July 26, 1998, J. Geophys. Res., 116, A03221, doi: 10.1029/2010JA016200.en_US
dc.identifier.citedreferenceRay, L. C., R. E. Ergun, P. A. Delamere, and F. Bagenal ( 2010 ), Magnetosphere‐ionosphere coupling at Jupiter: Effect of field‐aligned potentials on angular momentum transport, J. Geophys. Res., 115, A09211, doi: 10.1029/2010JA015423.en_US
dc.identifier.citedreferenceRay, L. C., N. A. Achilleos, M. F. Vogt, and J. N. Yates ( 2014 ), Local time variations in Jupiter's magnetosphere‐ionosphere coupling system, J. Geophys. Res. Space Physics, 119, 4740 – 4751, doi: 10.1002/2014JA019941.en_US
dc.identifier.citedreferenceRussell, C. T., Z. J. Yu, K. K. Khurana, and M. G. Kivelson ( 2001 ), Magnetic field changes in the inner magnetosphere of Jupiter, Adv. Space Res., 28 ( 6 ), 897 – 902.en_US
dc.identifier.citedreferenceStallard, T. S., S. Miller, S. W. H. Cowley, and E. J. Bunce ( 2003 ), Jupiter's polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval, Geophys. Res. Lett., 30 ( 5 ), 1221, doi: 10.1029/2002GL016031.en_US
dc.identifier.citedreferenceTao, C., R. Kataoka, H. Fukunishi, Y. Takahashi, and T. Yokoyama ( 2005 ), Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements, J. Geophys. Res., 110, A11208, doi: 10.1029/2004JA010959.en_US
dc.identifier.citedreferenceVasyliūnas, V. M. ( 1983 ), Plasma distribution and flow, in Physics of the Jovian Magnetosphere, edited by A. J. Dessler, p. 395, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceVogt, M. F., and M. G. Kivelson ( 2012 ), Relating Jupiter's auroral features to magnetospheric sources, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, edited by A. Keiling et al., AGU, Washington, D. C., doi: 10.1029/2011GM001181.en_US
dc.identifier.citedreferenceVogt, M. F., M. G. Kivelson, K. K. Khurana, S. P. Joy, and R. J. Walker ( 2010 ), Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations, J. Geophys. Res., 115, A06219, doi: 10.1029/2009JA015098.en_US
dc.identifier.citedreferenceVogt, M. F., M. G. Kivelson, K. K. Khurana, R. J. Walker, B. Bonfond, D. Grodent, and A. Radioti ( 2011 ), Improved mapping of Jupiter's auroral features to magnetospheric sources, J. Geophys. Res., 116, A03220, doi: 10.1029/2010JA016148.en_US
dc.identifier.citedreferenceWaite, J. H., Jr., et al. ( 2001 ), An auroral flare at Jupiter, Nature, 410, 787 – 789.en_US
dc.identifier.citedreferenceWoch, J., N. Krupp, and A. Lagg ( 2002 ), Particle bursts in the Jovian magnetosphere: Evidence for a near‐Jupiter neutral line, Geophys. Res. Lett., 29 ( 7 ), 1138, doi: 10.1029/2001GL014080.en_US
dc.identifier.citedreferenceBagenal, F., et al. ( 2014 ), Magnetospheric science objectives of the Juno mission, Space Sci. Rev., doi: 10.1007/s11214-014-0036-8.en_US
dc.identifier.citedreferenceBonfond, B. ( 2013 ), When moons create aurora: The satellite footprints on giant planets, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, Geophys. Monogr. Ser., vol. 197, edited by A. Keiling et al., pp. 133 – 140, AGU, Washington, D. C., doi: 10.1029/2011GM001169.en_US
dc.identifier.citedreferenceBonfond, B., D. Grodent, J.‐C. Gérard, T. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and J. Gustin ( 2012 ), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi: 10.1029/2011GL050253.en_US
dc.identifier.citedreferenceBroadfoot, A. L., et al. ( 1979 ), Extreme ultraviolet observations from Voyager 1 encounter with Jupiter, Science, 204, 979 – 982.en_US
dc.identifier.citedreferenceBunce, E. J., S. W. H. Cowley, and T. K. Yeoman ( 2004 ), Jovian cusp processes: Implications for the polar aurora, J. Geophys. Res., 109, A09S13, doi: 10.1029/2003JA010280.en_US
dc.identifier.citedreferenceClarke, J. T., et al. ( 2002 ), Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter, Nature, 415, 997 – 1000.en_US
dc.identifier.citedreferenceConnerney, J., M. Acuña, and N. Ness ( 1981 ), Modeling the Jovian current sheet and inner magnetosphere, J. Geophys. Res., 86 ( A10 ), 8370 – 8384, doi: 10.1029/JA086iA10p08370.en_US
dc.identifier.citedreferenceConnerney, J. E. P., R. Baron, T. Satoh, and T. Owen ( 1993 ), Images of excited H 3 + at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035 – 1038.en_US
dc.identifier.citedreferenceConnerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh ( 1998 ), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103, 11,929 – 11,939, doi: 10.1029/97JA03726.en_US
dc.identifier.citedreferenceCowley, S. W. H., and E. J. Bunce ( 2001 ), Origin of the main auroral oval in Jupiter's coupled magnetosphere‐ionosphere system, Planet. Space Sci., 49, 1067 – 1088.en_US
dc.identifier.citedreferenceCowley, S. W. H., and E. J. Bunce ( 2003a ), Modulation of Jovian middle magnetosphere currents and auroral precipitation by solar wind‐induced compressions and expansions of the magnetosphere: Initial response and steady state, Planet. Space Sci., 51, 31 – 56.en_US
dc.identifier.citedreferenceCowley, S. W. H., and E. J. Bunce ( 2003b ), Modulation of Jupiter's main auroral oval emissions by solar wind‐induced expansions and compressions of the magnetosphere, Planet. Space Sci., 51, 57 – 79.en_US
dc.identifier.citedreferenceCowley, S. W. H., E. J. Bunce, T. S. Stallard, and S. Miller ( 2003 ), Jupiter's polar ionospheric flows: Theoretical interpretation, Geophys. Res. Lett., 30 ( 5 ), 1220, doi: 10.1029/2002GL016030.en_US
dc.identifier.citedreferenceDelamere, P. A., and F. Bagenal ( 2010 ), Solar wind interaction with Jupiter's magnetosphere, J. Geophys. Res., 115, A10201, doi: 10.1029/2010JA015347.en_US
dc.identifier.citedreferenceGérard, J.‐C., D. Grodent, A. Radioti, B. Bonfond, and J. T. Clarke ( 2013 ), Hubble observations of Jupiter's north‐south conjugate ultraviolet aurora, Icarus, 226, 1559 – 1567.en_US
dc.identifier.citedreferenceGrodent, D. ( 2014 ), A brief review of ultraviolet auroral emissions on giant planets, Space Sci. Rev., doi: 10.1007/s11214-014-0052-8.en_US
dc.identifier.citedreferenceGrodent, D., J. T. Clarke, J. Kim, J. H. Waite, and S. W. H. Cowley ( 2003a ), Jupiter's main auroral oval observed with HST‐STIS, J. Geophys. Res., 108 ( A11 ), 1389, doi: 10.1029/2003JA009921.en_US
dc.identifier.citedreferenceGrodent, D., J. T. Clarke, J. H. Waite Jr., S. W. H. Cowley, J.‐C. Gérard, and J. Kim ( 2003b ), Jupiter's polar auroral emissions, J. Geophys. Res., 108 ( A10 ), 1366, doi: 10.1029/2003JA010017.en_US
dc.identifier.citedreferenceGrodent, D., J.‐C. Gérard, J. T. Clarke, G. R. Gladstone, and J. H. Waite ( 2004 ), A possible auroral signature of a magnetotail reconnection process on Jupiter, J. Geophys. Res., 109, A05201, doi: 10.1029/2003JA010341.en_US
dc.identifier.citedreferenceGrodent, D., J.‐C. Gérard, A. Radioti, B. Bonfond, and A. Saglam ( 2008a ), Jupiter's changing auroral location, J. Geophys. Res., 113, A01206, doi: 10.1029/2007JA012601.en_US
dc.identifier.citedreferenceGrodent, D., B. Bonfond, J.‐C. Gérard, A. Radioti, J. Gustin, J. T. Clarke, J. Nichols, and J. E. P. Connerney ( 2008b ), Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere, J. Geophys. Res., 113, A09201, doi: 10.1029/2008JA013185.en_US
dc.identifier.citedreferenceHanlon, P. G., M. K. Dougherty, N. Krupp, K. C. Hansen, F. J. Crary, D. T. Young, and G. Tóth ( 2004 ), Dual spacecraft observations of a compression event within the Jovian magnetosphere: Signatures of externally triggered supercorotation?, J. Geophys. Res., 109, A09S09, doi: 10.1029/2003JA010116.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.