Magnetosphere‐ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models
dc.contributor.author | Vogt, Marissa F. | en_US |
dc.contributor.author | Bunce, Emma J. | en_US |
dc.contributor.author | Kivelson, Margaret G. | en_US |
dc.contributor.author | Khurana, Krishan K. | en_US |
dc.contributor.author | Walker, Raymond J. | en_US |
dc.contributor.author | Radioti, Aikaterini | en_US |
dc.contributor.author | Bonfond, Bertrand | en_US |
dc.contributor.author | Grodent, Denis | en_US |
dc.date.accessioned | 2015-06-01T18:52:00Z | |
dc.date.available | 2016-05-10T20:26:28Z | en |
dc.date.issued | 2015-04 | en_US |
dc.identifier.citation | Vogt, Marissa F.; Bunce, Emma J.; Kivelson, Margaret G.; Khurana, Krishan K.; Walker, Raymond J.; Radioti, Aikaterini; Bonfond, Bertrand; Grodent, Denis (2015). "Magnetosphere‐ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models." Journal of Geophysical Research: Space Physics 120(4): 2584-2599. | en_US |
dc.identifier.issn | 2169-9380 | en_US |
dc.identifier.issn | 2169-9402 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/111797 | |
dc.description.abstract | The lack of global field models accurate beyond the inner magnetosphere (<30 RJ) makes it difficult to relate Jupiter's polar auroral features to magnetospheric source regions. We recently developed a model that maps Jupiter's equatorial magnetosphere to the ionosphere using a flux equivalence calculation that requires equal flux at the equatorial and ionospheric ends of flux tubes. This approach is more accurate than tracing field lines in a global field model but only if it is based on an accurate model of Jupiter's internal field. At present there are three widely used internal field models—Voyager Io Pioneer 4 (VIP4), the Grodent Anomaly Model (GAM), and VIP Anomaly Longitude (VIPAL). The purpose of this study is to quantify how the choice of an internal field model affects the mapping of various auroral features using the flux equivalence calculation. We find that different internal field models can shift the ionospheric mapping of points in the equatorial plane by several degrees and shift the magnetospheric mapping to the equator by ~30 RJ radially and by less than 1 h in local time. These shifts are consistent with differences in how well each model maps the Ganymede footprint, underscoring the need for more accurate Jovian internal field models. We discuss differences in the mapping of specific auroral features and the size and location of the open/closed field line boundary. Understanding these differences is important for the continued analysis of Hubble Space Telescope images and in planning for Juno's arrival at Jupiter in 2016.Key PointsThere are three widely used internal Jovian magnetic field modelsWe compare auroral mapping results using different field modelsMapping results can be shifted by several degrees or tens of Jovian radii | en_US |
dc.publisher | AGU | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Jupiter | en_US |
dc.subject.other | aurora | en_US |
dc.subject.other | magnetosphere | en_US |
dc.title | Magnetosphere‐ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/111797/1/jgra51685.pdf | |
dc.identifier.doi | 10.1002/2014JA020729 | en_US |
dc.identifier.source | Journal of Geophysical Research: Space Physics | en_US |
dc.identifier.citedreference | Radioti, A., J.‐C. Gérard, D. Grodent, B. Bonfond, N. Krupp, and J. Woch ( 2008a ), Discontinuity in Jupiter's main auroral oval, J. Geophys. Res., 113, A01215, doi: 10.1029/2007JA012610. | en_US |
dc.identifier.citedreference | Hess, S. L. G., B. Bonfond, P. Zarka, and D. Grodent ( 2011 ), Model of the Jovian magnetic field topology constrained by the Io auroral emissions, J. Geophys. Res., 116, A05217, doi: 10.1029/2010JA016262. | en_US |
dc.identifier.citedreference | Hill, T. W. ( 1979 ), Inertial limit on corotation, J. Geophys. Res., 84 ( A11 ), 6554 – 6558, doi: 10.1029/JA084iA11p06554. | en_US |
dc.identifier.citedreference | Hill, T. W. ( 2001 ), The Jovian auroral oval, J. Geophys. Res., 106, 8101 – 8107, doi: 10.1029/2000JA000302. | en_US |
dc.identifier.citedreference | Joy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and T. Ogino ( 2002 ), Probabilistic models of the Jovian magnetopause and bow shock locations, J. Geophys. Res., 107 ( A10 ), 1309, doi: 10.1029/2001JA009146. | en_US |
dc.identifier.citedreference | Khurana, K. K. ( 2001 ), Influence of solar wind of Jupiter's magnetosphere deduced from currents in the equatorial plane, J. Geophys. Res., 106, 25,999 – 26,016, doi: 10.1029/2000JA000352. | en_US |
dc.identifier.citedreference | Kivelson, M. G., and K. K. Khurana ( 2002 ), Properties of the magnetic field in the Jovian magnetotail, J. Geophys. Res., 107 ( A8 ), 1196, doi: 10.1029/2001JA000249. | en_US |
dc.identifier.citedreference | Kronberg, E. A., J. Woch, N. Krupp, A. Lagg, K. K. Khurana, and K.‐H. Glassmeier ( 2005 ), Mass release at Jupiter: Substorm‐like processes in the Jovian magnetotail, J. Geophys. Res., 110, A03211, doi: 10.1029/2004JA010777. | en_US |
dc.identifier.citedreference | Nichols, J. D. ( 2011 ), Magnetosphere‐ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self‐consistent current sheet magnetic field model, J. Geophys. Res., 116, A10232, doi: 10.1029/2011JA016922. | en_US |
dc.identifier.citedreference | Nichols, J. D., J. T. Clarke, J. C. Gérard, D. Grodent, and K. C. Hansen ( 2009 ), Variation of different components of Jupiter's auroral emission, J. Geophys. Res., 114, A06210, doi: 10.1029/2009JA014051. | en_US |
dc.identifier.citedreference | Pallier, L., and R. Prangé ( 2001 ), More about the structure of the high‐latitude Jovian aurorae, Planet. Space Sci., 49, 1159 – 1173. | en_US |
dc.identifier.citedreference | Radioti, A., D. Grodent, J.‐C. Gérard, B. Bonfond, and J. T. Clarke ( 2008b ), Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter's magnetotail, Geophys. Res. Lett., 35, L03104, doi: 10.1029/2007GL032460. | en_US |
dc.identifier.citedreference | Radioti, A., D. Grodent, J.‐C. Gérard, and B. Bonfond ( 2010 ), Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter, J. Geophys. Res., 115, A07214, doi: 10.1029/2009JA014844. | en_US |
dc.identifier.citedreference | Radioti, A., D. Grodent, J.‐C. Gérard, M. F. Vogt, M. Lystrup, and B. Bonfond ( 2011 ), Nightside reconnection at Jupiter: Auroral and magnetic field observations from July 26, 1998, J. Geophys. Res., 116, A03221, doi: 10.1029/2010JA016200. | en_US |
dc.identifier.citedreference | Ray, L. C., R. E. Ergun, P. A. Delamere, and F. Bagenal ( 2010 ), Magnetosphere‐ionosphere coupling at Jupiter: Effect of field‐aligned potentials on angular momentum transport, J. Geophys. Res., 115, A09211, doi: 10.1029/2010JA015423. | en_US |
dc.identifier.citedreference | Ray, L. C., N. A. Achilleos, M. F. Vogt, and J. N. Yates ( 2014 ), Local time variations in Jupiter's magnetosphere‐ionosphere coupling system, J. Geophys. Res. Space Physics, 119, 4740 – 4751, doi: 10.1002/2014JA019941. | en_US |
dc.identifier.citedreference | Russell, C. T., Z. J. Yu, K. K. Khurana, and M. G. Kivelson ( 2001 ), Magnetic field changes in the inner magnetosphere of Jupiter, Adv. Space Res., 28 ( 6 ), 897 – 902. | en_US |
dc.identifier.citedreference | Stallard, T. S., S. Miller, S. W. H. Cowley, and E. J. Bunce ( 2003 ), Jupiter's polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval, Geophys. Res. Lett., 30 ( 5 ), 1221, doi: 10.1029/2002GL016031. | en_US |
dc.identifier.citedreference | Tao, C., R. Kataoka, H. Fukunishi, Y. Takahashi, and T. Yokoyama ( 2005 ), Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements, J. Geophys. Res., 110, A11208, doi: 10.1029/2004JA010959. | en_US |
dc.identifier.citedreference | Vasyliūnas, V. M. ( 1983 ), Plasma distribution and flow, in Physics of the Jovian Magnetosphere, edited by A. J. Dessler, p. 395, Cambridge Univ. Press, New York. | en_US |
dc.identifier.citedreference | Vogt, M. F., and M. G. Kivelson ( 2012 ), Relating Jupiter's auroral features to magnetospheric sources, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, edited by A. Keiling et al., AGU, Washington, D. C., doi: 10.1029/2011GM001181. | en_US |
dc.identifier.citedreference | Vogt, M. F., M. G. Kivelson, K. K. Khurana, S. P. Joy, and R. J. Walker ( 2010 ), Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations, J. Geophys. Res., 115, A06219, doi: 10.1029/2009JA015098. | en_US |
dc.identifier.citedreference | Vogt, M. F., M. G. Kivelson, K. K. Khurana, R. J. Walker, B. Bonfond, D. Grodent, and A. Radioti ( 2011 ), Improved mapping of Jupiter's auroral features to magnetospheric sources, J. Geophys. Res., 116, A03220, doi: 10.1029/2010JA016148. | en_US |
dc.identifier.citedreference | Waite, J. H., Jr., et al. ( 2001 ), An auroral flare at Jupiter, Nature, 410, 787 – 789. | en_US |
dc.identifier.citedreference | Woch, J., N. Krupp, and A. Lagg ( 2002 ), Particle bursts in the Jovian magnetosphere: Evidence for a near‐Jupiter neutral line, Geophys. Res. Lett., 29 ( 7 ), 1138, doi: 10.1029/2001GL014080. | en_US |
dc.identifier.citedreference | Bagenal, F., et al. ( 2014 ), Magnetospheric science objectives of the Juno mission, Space Sci. Rev., doi: 10.1007/s11214-014-0036-8. | en_US |
dc.identifier.citedreference | Bonfond, B. ( 2013 ), When moons create aurora: The satellite footprints on giant planets, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, Geophys. Monogr. Ser., vol. 197, edited by A. Keiling et al., pp. 133 – 140, AGU, Washington, D. C., doi: 10.1029/2011GM001169. | en_US |
dc.identifier.citedreference | Bonfond, B., D. Grodent, J.‐C. Gérard, T. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and J. Gustin ( 2012 ), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi: 10.1029/2011GL050253. | en_US |
dc.identifier.citedreference | Broadfoot, A. L., et al. ( 1979 ), Extreme ultraviolet observations from Voyager 1 encounter with Jupiter, Science, 204, 979 – 982. | en_US |
dc.identifier.citedreference | Bunce, E. J., S. W. H. Cowley, and T. K. Yeoman ( 2004 ), Jovian cusp processes: Implications for the polar aurora, J. Geophys. Res., 109, A09S13, doi: 10.1029/2003JA010280. | en_US |
dc.identifier.citedreference | Clarke, J. T., et al. ( 2002 ), Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter, Nature, 415, 997 – 1000. | en_US |
dc.identifier.citedreference | Connerney, J., M. Acuña, and N. Ness ( 1981 ), Modeling the Jovian current sheet and inner magnetosphere, J. Geophys. Res., 86 ( A10 ), 8370 – 8384, doi: 10.1029/JA086iA10p08370. | en_US |
dc.identifier.citedreference | Connerney, J. E. P., R. Baron, T. Satoh, and T. Owen ( 1993 ), Images of excited H 3 + at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035 – 1038. | en_US |
dc.identifier.citedreference | Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh ( 1998 ), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103, 11,929 – 11,939, doi: 10.1029/97JA03726. | en_US |
dc.identifier.citedreference | Cowley, S. W. H., and E. J. Bunce ( 2001 ), Origin of the main auroral oval in Jupiter's coupled magnetosphere‐ionosphere system, Planet. Space Sci., 49, 1067 – 1088. | en_US |
dc.identifier.citedreference | Cowley, S. W. H., and E. J. Bunce ( 2003a ), Modulation of Jovian middle magnetosphere currents and auroral precipitation by solar wind‐induced compressions and expansions of the magnetosphere: Initial response and steady state, Planet. Space Sci., 51, 31 – 56. | en_US |
dc.identifier.citedreference | Cowley, S. W. H., and E. J. Bunce ( 2003b ), Modulation of Jupiter's main auroral oval emissions by solar wind‐induced expansions and compressions of the magnetosphere, Planet. Space Sci., 51, 57 – 79. | en_US |
dc.identifier.citedreference | Cowley, S. W. H., E. J. Bunce, T. S. Stallard, and S. Miller ( 2003 ), Jupiter's polar ionospheric flows: Theoretical interpretation, Geophys. Res. Lett., 30 ( 5 ), 1220, doi: 10.1029/2002GL016030. | en_US |
dc.identifier.citedreference | Delamere, P. A., and F. Bagenal ( 2010 ), Solar wind interaction with Jupiter's magnetosphere, J. Geophys. Res., 115, A10201, doi: 10.1029/2010JA015347. | en_US |
dc.identifier.citedreference | Gérard, J.‐C., D. Grodent, A. Radioti, B. Bonfond, and J. T. Clarke ( 2013 ), Hubble observations of Jupiter's north‐south conjugate ultraviolet aurora, Icarus, 226, 1559 – 1567. | en_US |
dc.identifier.citedreference | Grodent, D. ( 2014 ), A brief review of ultraviolet auroral emissions on giant planets, Space Sci. Rev., doi: 10.1007/s11214-014-0052-8. | en_US |
dc.identifier.citedreference | Grodent, D., J. T. Clarke, J. Kim, J. H. Waite, and S. W. H. Cowley ( 2003a ), Jupiter's main auroral oval observed with HST‐STIS, J. Geophys. Res., 108 ( A11 ), 1389, doi: 10.1029/2003JA009921. | en_US |
dc.identifier.citedreference | Grodent, D., J. T. Clarke, J. H. Waite Jr., S. W. H. Cowley, J.‐C. Gérard, and J. Kim ( 2003b ), Jupiter's polar auroral emissions, J. Geophys. Res., 108 ( A10 ), 1366, doi: 10.1029/2003JA010017. | en_US |
dc.identifier.citedreference | Grodent, D., J.‐C. Gérard, J. T. Clarke, G. R. Gladstone, and J. H. Waite ( 2004 ), A possible auroral signature of a magnetotail reconnection process on Jupiter, J. Geophys. Res., 109, A05201, doi: 10.1029/2003JA010341. | en_US |
dc.identifier.citedreference | Grodent, D., J.‐C. Gérard, A. Radioti, B. Bonfond, and A. Saglam ( 2008a ), Jupiter's changing auroral location, J. Geophys. Res., 113, A01206, doi: 10.1029/2007JA012601. | en_US |
dc.identifier.citedreference | Grodent, D., B. Bonfond, J.‐C. Gérard, A. Radioti, J. Gustin, J. T. Clarke, J. Nichols, and J. E. P. Connerney ( 2008b ), Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere, J. Geophys. Res., 113, A09201, doi: 10.1029/2008JA013185. | en_US |
dc.identifier.citedreference | Hanlon, P. G., M. K. Dougherty, N. Krupp, K. C. Hansen, F. J. Crary, D. T. Young, and G. Tóth ( 2004 ), Dual spacecraft observations of a compression event within the Jovian magnetosphere: Signatures of externally triggered supercorotation?, J. Geophys. Res., 109, A09S09, doi: 10.1029/2003JA010116. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.