Show simple item record

Establishing Biomechanical Mechanisms in Mouse Models: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bones

dc.contributor.authorJepsen, Karl Jen_US
dc.contributor.authorSilva, Matthew Jen_US
dc.contributor.authorVashishth, Deepaken_US
dc.contributor.authorGuo, X Edwarden_US
dc.contributor.authorvan der Meulen, Marjolein CHen_US
dc.date.accessioned2015-06-01T18:52:02Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationJepsen, Karl J; Silva, Matthew J; Vashishth, Deepak; Guo, X Edward; van der Meulen, Marjolein CH (2015). "Establishing Biomechanical Mechanisms in Mouse Models: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bones." Journal of Bone and Mineral Research 30(6): 951-966.en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111801
dc.description.abstractMice are widely used in studies of skeletal biology, and assessment of their bones by mechanical testing is a critical step when evaluating the functional effects of an experimental perturbation. For example, a gene knockout may target a pathway important in bone formation and result in a “low bone mass” phenotype. But how well does the skeleton bear functional loads; eg, how much do bones deform during loading and how resistant are bones to fracture? By systematic evaluation of bone morphological, densitometric, and mechanical properties, investigators can establish the “biomechanical mechanisms” whereby an experimental perturbation alters whole‐bone mechanical function. The goal of this review is to clarify these biomechanical mechanisms and to make recommendations for systematically evaluating phenotypic changes in mouse bones, with a focus on long‐bone diaphyses and cortical bone. Further, minimum reportable standards for testing conditions and outcome variables are suggested that will improve the comparison of data across studies. Basic biomechanical principles are reviewed, followed by a description of the cross‐sectional morphological properties that best inform the net cellular effects of a given experimental perturbation and are most relevant to biomechanical function. Although morphology is critical, whole‐bone mechanical properties can only be determined accurately by a mechanical test. The functional importance of stiffness, maximum load, postyield displacement, and work‐to‐fracture are reviewed. Because bone and body size are often strongly related, strategies to adjust whole‐bone properties for body mass are detailed. Finally, a comprehensive framework is presented using real data, and several examples from the literature are reviewed to illustrate how to synthesize morphological, tissue‐level, and whole‐bone mechanical properties of mouse long bones. © 2015 American Society for Bone and Mineral Researchen_US
dc.publisherAcademic Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFUNCTIONen_US
dc.subject.otherMOUSE MODELSen_US
dc.subject.otherBIOMECHANICAL MECHANISMSen_US
dc.subject.otherCORTICAL BONEen_US
dc.subject.otherBIOMECHANICS, BONEen_US
dc.titleEstablishing Biomechanical Mechanisms in Mouse Models: Practical Guidelines for Systematically Evaluating Phenotypic Changes in the Diaphyses of Long Bonesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111801/1/jbmr2539.pdf
dc.identifier.doi10.1002/jbmr.2539en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferencePrice CP, Herman BC, Lufkin T, Goldman HM, Jepsen KJ. Genetic variation in bone growth patterns defines adult mouse bone fragility. J Bone Miner Res. 2005; 20 ( 11 ): 1983 – 91.en_US
dc.identifier.citedreferenceVoide R, van Lenthe GH, Muller R. Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res. 2008; 23 ( 8 ): 1194 – 203.en_US
dc.identifier.citedreferencevan Lenthe GH, Voide R, Boyd SK, Muller R. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three‐point bending tests to determine bone tissue modulus. Bone. 2008; 43 ( 4 ): 717 – 23.en_US
dc.identifier.citedreferenceYershov Y, Baldini TH, Villagomez S, et al. Bone strength and related traits in HcB/Dem recombinant congenic mice. J Bone Miner Res. 2001; 16 ( 6 ): 992 – 1003.en_US
dc.identifier.citedreferenceSmith LM, Bigelow EM, Nolan BT, Faillace ME, Nadeau JH, Jepsen KJ. Genetic perturbations that impair functional trait interactions lead to reduced bone strength and increased fragility in mice. Bone. 2014; 67: 130 – 8.en_US
dc.identifier.citedreferenceSelker F, Carter DR. Scaling of long bone fracture strength with animal mass. J Biomech. 1989; 22 ( 11–12 ): 1175 – 83.en_US
dc.identifier.citedreferenceMikic B, Van der Meulen MC, Kingsley DM, Carter DR. Mechanical and geometric changes in the growing femora of BMP‐5 deficient mice. Bone. 1996; 18 ( 6 ): 601 – 7.en_US
dc.identifier.citedreferenceMacdonald HM, Cooper DM, McKay HA. Anterior‐posterior bending strength at the tibial shaft increases with physical activity in boys: evidence for non‐uniform geometric adaptation. Osteoporos Int. 2009; 20 ( 1 ): 61 – 70.en_US
dc.identifier.citedreferenceWagner DW, Lindsey DP, Beaupre GS. Deriving tissue density and elastic modulus from microCT bone scans. Bone. 2011; 49 ( 5 ): 931 – 8.en_US
dc.identifier.citedreferenceBi X, Patil CA, Lynch CC, et al. Raman and mechanical properties correlate at whole bone‐ and tissue‐levels in a genetic mouse model. J Biomech. 2011; 44 ( 2 ): 297 – 303.en_US
dc.identifier.citedreferenceMcBride SH, McKenzie JA, Bedrick BS, et al. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells. PLoS One. 2014; 9 ( 5 ): e96862.en_US
dc.identifier.citedreferenceAmend SR, Uluckan O, Hurchla M, et al. Thrombospondin‐1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts. J Bone Miner Res. 2015; 30 ( 1 ): 106 – 15.en_US
dc.identifier.citedreferenceVashishth D. The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep. 2007; 5 ( 2 ): 62 – 6.en_US
dc.identifier.citedreferenceJepsen KJ, Akkus OJ, Majeska RJ, Nadeau JH. Hierarchical relationship between bone traits and mechanical properties in inbred mice. Mamm Genome. 2003; 14 ( 2 ): 97 – 104.en_US
dc.identifier.citedreferenceJepsen KJ, Bigelow EM, Schlecht SH. Women build long bones with less cortical mass relative to body size and bone size compared with men. Clin Orthop Relat Res. Forthcoming. Epub 2015 Feb 18. DOI: 10.1007/s11999‐015‐4184‐2.en_US
dc.identifier.citedreferenceMiller LM, Little W, Schirmer A, Sheik F, Busa B, Judex S. Accretion of bone quantity and quality in the developing mouse skeleton. J Bone Miner Res. 2007; 22 ( 7 ): 1037 – 45.en_US
dc.identifier.citedreferenceMain RP, Lynch ME, van der Meulen MC. Load‐induced changes in bone stiffness and cancellous and cortical bone mass following tibial compression diminish with age in female mice. J Exp Biol. 2014; 217 (Pt 10): 1775 – 83.en_US
dc.identifier.citedreferenceGlatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age‐related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007; 22 ( 8 ): 1197 – 207.en_US
dc.identifier.citedreferenceRitchie RO, Koester KJ, Ionova S, Yao W, Lane NE, Ager JW 3rd. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. 2008; 43 ( 5 ): 798 – 812.en_US
dc.identifier.citedreferenceWright S. Correlation and causation. J Agric Res. 1921; 20: 557 – 85.en_US
dc.identifier.citedreferenceWaddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942; 14: 563 – 5.en_US
dc.identifier.citedreferenceCurrey JD. Mechanical properties of bone tissues with greatly differing functions. J Biomech. 1979; 12 ( 4 ): 313 – 9.en_US
dc.identifier.citedreferenceFrost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987; 219 ( 1 ): 1 – 9.en_US
dc.identifier.citedreferenceJepsen KJ, Hu B, Tommasini SM, et al. Phenotypic integration of skeletal traits during growth buffers genetic variants affecting the slenderness of femora in inbred mouse strains. Mamm Genome. 2009; 20 ( 1 ): 21 – 33.en_US
dc.identifier.citedreferenceBeamer WG, Shultz KL, Churchill GA, et al. Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome. 1999; 10 ( 11 ): 1043 – 9.en_US
dc.identifier.citedreferenceLi R, Tsaih S‐W, Shockley K, et al. Structural model analysis of multiple quantitative traits. PLoS Genet. 2006; 2 ( 7 ): 1046 – 57.en_US
dc.identifier.citedreferenceSaless N, Litscher SJ, Houlihan MJ, et al. Comprehensive skeletal phenotyping and linkage mapping in an intercross of recombinant congenic mouse strains HcB‐8 and HcB‐23. Cells Tissues Organs. 2011; 194 ( 2–4 ): 244 – 8.en_US
dc.identifier.citedreferenceKlein RF, Allard J, Avnur Z, et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science. 2004; 303 ( 5655 ): 229 – 32.en_US
dc.identifier.citedreferenceDucy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin‐deficient mice. Nature. 1996; 382 ( 6590 ): 448 – 52.en_US
dc.identifier.citedreferenceMaloul A, Rossmeier K, Mikic B, Pogue V, Battaglia T. Geometric and material contributions to whole bone structural behavior in GDF‐7‐deficient mice. Connect Tissue Res. 2006; 47 ( 3 ): 157 – 62.en_US
dc.identifier.citedreferenceYakar S, Canalis E, Sun H, et al. Serum IGF‐1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J Bone Miner Res. 2009; 24 ( 8 ): 1481 – 92.en_US
dc.identifier.citedreferenceSaini V, Marengi DA, Barry KJ, et al. Parathyroid hormone (PTH)/PTH‐related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem. 2013; 288 ( 28 ): 20122 – 34.en_US
dc.identifier.citedreferenceBrodt MD, Silva MJ. Aged mice have enhanced endocortical response and normal periosteal response compared with young‐adult mice following 1 week of axial tibial compression. J Bone Miner Res. 2010; 25 ( 9 ): 2006 – 15.en_US
dc.identifier.citedreferenceFritton JC, Myers ER, Wright TM, van der Meulen MC. Loading induces site‐specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone. 2005; 36 ( 6 ): 1030 – 8.en_US
dc.identifier.citedreferenceMelville KM, Kelly NH, Surita G, et al. Effects of deletion of ER‐Alpha in osteoblast‐lineage cells on bone mass and adaptation to mechanical loading differs in female and male mice. J Bone Miner Res. Forthcoming. Epub 2015 Feb 24. DOI: 10.1002/jbmr.2488en_US
dc.identifier.citedreferencePelch KE, Carleton SM, Phillips CL, Nagel SC. Developmental exposure to xenoestrogens at low doses alters femur length and tensile strength in adult mice. Biol Reprod. 2012; 86 ( 3 ): 69.en_US
dc.identifier.citedreferenceMcCauley LK. Transgenic mouse models of metabolic bone disease. Curr Opin Rheumatol. 2001; 13 ( 4 ): 316 – 25.en_US
dc.identifier.citedreferenceMurray SA. Mouse resources for craniofacial research. Genesis. 2011; 49 ( 4 ): 190 – 9.en_US
dc.identifier.citedreferenceMenke DB. Engineering subtle targeted mutations into the mouse genome. Genesis. 2013; 51 ( 9 ): 605 – 18.en_US
dc.identifier.citedreferenceBouabe H, Okkenhaug K. Gene targeting in mice: a review. Methods Mol Biol. 2013; 1064: 315 – 36.en_US
dc.identifier.citedreferencePiret SE, Thakker RV. Mouse models: approaches to generating in vivo models for hereditary disorders of mineral and skeletal homeostasis. In: Thakker RV, Whyte MP, Eisen EJ, Igarashi T, editors. Genetics of bone biology and skeletal diseases. London, UK: Academic Press: 2013. p. 181 – 204.en_US
dc.identifier.citedreferenceBlank RD. Breaking down bone strength: a perspective on the future of skeletal genetics. J Bone Miner Res. 2001; 16 ( 7 ): 1207 – 11.en_US
dc.identifier.citedreferenceBonadio J, Jepsen KJ, Mansoura MK, Jaenisch R, Kuhn JL, Goldstein SA. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J Clin Invest. 1993; 92 ( 4 ): 1697 – 705.en_US
dc.identifier.citedreferenceBrodt MD, Ellis CB, Silva MJ. Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res. 1999; 14 ( 12 ): 2159 – 66.en_US
dc.identifier.citedreferenceJepsen KJ, Hu B, Tommasini SM, et al. Genetic randomization reveals functional relationships among morphologic and tissue‐quality traits that contribute to bone strength and fragility. Mamm Genome. 2007; 18 ( 6–7 ): 492 – 507.en_US
dc.identifier.citedreferenceTurner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993; 14 ( 4 ): 595 – 608.en_US
dc.identifier.citedreferenceBurr DB, Milgrom C, Fyhrie D, et al. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996; 18 ( 5 ): 405 – 10.en_US
dc.identifier.citedreferenceFritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self‐similarity of low‐magnitude strains. J Biomech. 2000; 33 ( 3 ): 317 – 25.en_US
dc.identifier.citedreferencevan der Meulen MC, Jepsen KJ, Mikic B. Understanding bone strength: size isn't everything. Bone. 2001; 29 ( 2 ): 101 – 4.en_US
dc.identifier.citedreferenceSilva MJ, Brodt MD, Wopenka B, et al. Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res. 2006; 21 ( 1 ): 78 – 88.en_US
dc.identifier.citedreferenceBurstein AH, Frankel VH. A standard test for laboratory animal bone. J Biomech. 1971; 4 ( 2 ): 155 – 8.en_US
dc.identifier.citedreferenceJepsen KJ, Pennington DE, Lee YL, Warman M, Nadeau J. Bone brittleness varies with genetic background in A/J and C57BL/6J inbred mice. J Bone Miner Res. 2001; 16 ( 10 ): 1854 – 62.en_US
dc.identifier.citedreferencePoundarik AA, Diab T, Sroga GE, et al. Dilatational band formation in bone. Proc Natl Acad Sci U S A. 2012; 109 ( 47 ): 19178 – 83.en_US
dc.identifier.citedreferenceCarriero A, Zimmermann EA, Paluszny A, et al. How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res. 2014; 29 ( 6 ): 1392 – 401.en_US
dc.identifier.citedreferenceLynch JA, Silva MJ. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time‐zero and induces damage‐dependent woven bone formation. Bone. 2008; 42 ( 5 ): 942 – 9.en_US
dc.identifier.citedreferenceMaruyama N, Shibata Y, Mochizuki A, et al. Bone micro‐fragility caused by the mimetic aging processes in alpha‐klotho deficient mice: in situ nanoindentation assessment of dilatational bands. Biomaterials. 2015; 47: 62 – 71.en_US
dc.identifier.citedreferenceVashishth D, Tanner KE, Bonfield W. Contribution, development and morphology of microcracking in cortical bone during crack propagation. J Biomech. 2000; 33 ( 9 ): 1169 – 74.en_US
dc.identifier.citedreferenceJepsen KJ, Goldstein SA, Kuhn JL, Schaffler MB, Bonadio J. Type‐I collagen mutation compromises the post‐yield behavior of Mov13 long bone. J Orthop Res. 1996; 14 ( 3 ): 493 – 9.en_US
dc.identifier.citedreferenceTang SY, Allen MR, Phipps R, Burr DB, Vashishth D. Changes in non‐enzymatic glycation and its association with altered mechanical properties following 1‐year treatment with risedronate or alendronate. Osteoporos Int. 2009; 20 ( 6 ): 887 – 94.en_US
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro‐computed tomography. J Bone Miner Res. 2010 ‐25 ( 7 ): 1468 – 86.en_US
dc.identifier.citedreferenceDempster DW, Compston JE, Drezner MK, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013; 28 ( 1 ): 2 – 17.en_US
dc.identifier.citedreferencePatsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013; 28 ( 2 ): 313 – 24.en_US
dc.identifier.citedreferenceYou LD, Weinbaum S, Cowin SC, Schaffler MB. Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol. 2004; 278 ( 2 ): 505 – 13.en_US
dc.identifier.citedreferenceMader KS, Schneider P, Muller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013; 57 ( 1 ): 142 – 54.en_US
dc.identifier.citedreferenceSchneider P, Stauber M, Voide R, Stampanoni M, Donahue LR, Muller R. Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro‐ and nano‐CT. J Bone Miner Res. 2007; 22 ( 10 ): 1557 – 70.en_US
dc.identifier.citedreferenceCarriero A, Doube M, Vogt M, et al. Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone. 2014; 61: 116 – 24.en_US
dc.identifier.citedreferenceKuhnisch J, Seto J, Lange C, et al. Multiscale, converging defects of macro‐porosity, microstructure and matrix mineralization impact long bone fragility in NF1. PLoS One. 2014; 9 ( 1 ): e86115.en_US
dc.identifier.citedreferenceLai LP, Lotinun S, Bouxsein ML, Baron R, McMahon AP. Stk11 (Lkb1) deletion in the osteoblast lineage leads to high bone turnover, increased trabecular bone density and cortical porosity. Bone. 2014; 69: 98 – 108.en_US
dc.identifier.citedreferenceSilva MJ, Brodt MD, Fan Z, Rho JY. Nanoindentation and whole‐bone bending estimates of material properties in bones from the senescence accelerated mouse SA MP6. J Biomech. 2004; 37 ( 11 ): 1639 – 46.en_US
dc.identifier.citedreferenceSchriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH. A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech. 2005; 38 ( 3 ): 467 – 75.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.