Show simple item record

The global structure and time evolution of dayside magnetopause surface eigenmodes

dc.contributor.authorHartinger, M. D.en_US
dc.contributor.authorPlaschke, F.en_US
dc.contributor.authorArcher, M. O.en_US
dc.contributor.authorWelling, D. T.en_US
dc.contributor.authorMoldwin, M. B.en_US
dc.contributor.authorRidley, A.en_US
dc.date.accessioned2015-06-01T18:52:03Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04-28en_US
dc.identifier.citationHartinger, M. D.; Plaschke, F.; Archer, M. O.; Welling, D. T.; Moldwin, M. B.; Ridley, A. (2015). "The global structure and time evolution of dayside magnetopause surface eigenmodes." Geophysical Research Letters 42(8): 2594-2602.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111803
dc.description.abstractTheoretical work and recent observations suggest that the dayside magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern and southern ionospheres. These magnetopause surface eigenmodes (MSEs) are a potential source of magnetospheric ultralow‐frequency (ULF) waves with frequencies less than 2 mHz. Here we use the Space Weather Modeling Framework to study the magnetospheric response to impulsive solar wind dynamic pressure increases. Waves with 1.8 mHz frequency are excited whose global properties are largely consistent with theoretical predictions for MSE and cannot be explained by other known ULF wave modes. These simulation results lead to two key findings: (1) MSE can be sustained in realistic magnetic field geometries with nonzero flow shear and finite current layer thickness at the magnetopause and (2) MSE can seed the growth of tailward propagating surface waves via the Kelvin‐Helmholtz instability.Key PointsDayside ULF response to pulse consistent with magnetopause surface eigenmodeMagnetopause surface eigenmodes are a potential source of ULF waves below 2 mHzMagnetopause surface eigenmodes seed tailward propagating surface wave growthen_US
dc.publisherAcademic Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othereigenmodeen_US
dc.subject.otherMHD waveen_US
dc.subject.othersurface eigenmodeen_US
dc.subject.othersurface waveen_US
dc.subject.otherULF waveen_US
dc.subject.othermagnetopauseen_US
dc.titleThe global structure and time evolution of dayside magnetopause surface eigenmodesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111803/1/grl52799.pdf
dc.identifier.doi10.1002/2015GL063623en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceNewton, R. S., D. J. Southwood, and W. J. Hughes ( 1978 ), Damping of geomagnetic pulsations by the ionosphere, Planet. Space Sci., 26, 201 – 209, doi: 10.1016/0032-0633(78)90085-5.en_US
dc.identifier.citedreferenceAnderson, K. A., J. H. Binsack, and D. H. Fairfield ( 1968 ), Hydromagnetic disturbances of 3‐ to 15‐minute period on the magnetopause and their relation to bow shock spikes, J. Geophys. Res., 73, 2371 – 2386, doi: 10.1029/JA073i007p02371.en_US
dc.identifier.citedreferenceArcher, M. O., T. S. Horbury, J. P. Eastwood, J. M. Weygand, and T. K. Yeoman ( 2013a ), Magnetospheric response to magnetosheath pressure pulses: A low‐pass filter effect, J. Geophys. Res. Space Physics, 118, 5454 – 5466, doi: 10.1002/jgra.50519.en_US
dc.identifier.citedreferenceArcher, M. O., M. D. Hartinger, and T. S. Horbury ( 2013b ), Magnetospheric “magic” frequencies as magnetopause surface eigenmodes, Geophys. Res. Lett., 40, 5003 – 5008, doi: 10.1002/grl.50979.en_US
dc.identifier.citedreferenceBerchem, J., and C. T. Russell ( 1982 ), The thickness of the magnetopause current layer—ISEE 1 and 2 observations, J. Geophys. Res., 87, 2108 – 2114, doi: 10.1029/JA087iA04p02108.en_US
dc.identifier.citedreferenceBørve, S., H. Sato, H. L. Pécseli, and J. K. Trulsen ( 2011 ), Minute‐scale period oscillations of the magnetosphere, Ann. Geophys., 29, 663 – 671, doi: 10.5194/angeo-29-663-2011.en_US
dc.identifier.citedreferenceChen, L., and A. Hasegawa ( 1974 ), A theory of long‐period magnetic pulsations: 2. Impulse excitation of surface eigenmode, J. Geophys. Res., 79, 1033 – 1037, doi: 10.1029/JA079i007p01033.en_US
dc.identifier.citedreferenceClaudepierre, S. G., M. K. Hudson, W. Lotko, J. G. Lyon, and R. E. Denton ( 2010 ), Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations, J. Geophys. Res., 115, A11202, doi: 10.1029/2010JA015399.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1967 ), Hydromagnetic waves, in Physics of Geomagnetic Phenomena, edited by S. Matsushita and W. H. Campbell, pp. 913 – 934, Academic Press, New York.en_US
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, and A. A. Chan ( 2003 ), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108 ( A3 ), 1116, doi: 10.1029/2001JA009202.en_US
dc.identifier.citedreferenceFarrugia, C. J., F. T. Gratton, L. Bender, H. K. Biernat, N. V. Erkaev, J. M. Quinn, R. B. Torbert, and V. Dennisenko ( 1998 ), Charts of joint Kelvin‐Helmholtz and Rayleigh‐Taylor instabilities at the dayside magnetopause for strongly northward interplanetary magnetic field, J. Geophys. Res., 103, 6703 – 6728, doi: 10.1029/97JA03248.en_US
dc.identifier.citedreferenceFreeman, M. P., N. C. Freeman, and C. J. Farrugia ( 1995 ), A linear perturbation analysis of magnetopause motion in the Newton‐Busemann limit, Ann. Geophys., 13, 907 – 918, doi: 10.1007/s00585-995-0907-0.en_US
dc.identifier.citedreferenceHarrold, B. G., and J. C. Samson ( 1992 ), Standing ULF modes of the magnetosphere—A theory, Geophys. Res. Lett., 19, 1811 – 1814, doi: 10.1029/92GL01802.en_US
dc.identifier.citedreferenceHartinger, M. D., D. Welling, N. M. Viall, M. B. Moldwin, and A. Ridley ( 2014 ), The effect of magnetopause motion on fast mode resonance, J. Geophys. Res. Space Physics, 119, 8212 – 8227, doi: 10.1002/2014JA020401.en_US
dc.identifier.citedreferenceHietala, H., N. Partamies, T. V. Laitinen, L. B. N. Clausen, G. Facskó, A. Vaivads, H. E. J. Koskinen, I. Dandouras, H. Rème, and E. A. Lucek ( 2012 ), Supermagnetosonic subsolar magnetosheath jets and their effects: From the solar wind to the ionospheric convection, Ann. Geophys., 30, 33 – 48, doi: 10.5194/angeo-30-33-2012.en_US
dc.identifier.citedreferenceKruskal, M., and M. Schwarzschild ( 1954 ), Some instabilities of a completely ionized plasma, Proc. R. Soc. London, Ser. A, 223, 348 – 360, doi: 10.1098/rspa.1954.0120.en_US
dc.identifier.citedreferencePlaschke, F., and K.‐H. Glassmeier ( 2011 ), Properties of standing Kruskal‐Schwarzschild‐modes at the magnetopause, Ann. Geophys., 29, 1793 – 1807, doi: 10.5194/angeo-29-1793-2011.en_US
dc.identifier.citedreferencePlaschke, F., K.‐H. Glassmeier, H. U. Auster, O. D. Constantinescu, W. Magnes, V. Angelopoulos, D. G. Sibeck, and J. P. McFadden ( 2009a ), Standing Alfvén waves at the magnetopause, Geophys. Res. Lett., 36, L02104, doi: 10.1029/2008GL036411.en_US
dc.identifier.citedreferenceRidley, A, T. Gombosi, and D. De Zeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22, 567 – 584, doi: 10.5194/angeo-22-567-2004.en_US
dc.identifier.citedreferenceSamson, J. C., B. G. Harrold, J. M. Ruohoniemi, R. A. Greenwald, and A. D. M. Walker ( 1992 ), Field line resonances associated with MHD waveguides in the magnetosphere, Geophys. Res. Lett., 19, 441 – 444, doi: 10.1029/92GL00116.en_US
dc.identifier.citedreferenceSamson, J. C., C. L. Waters, F. W. Menk, and B. J. Fraser ( 1995 ), Fine structure in the spectra of low latitude field line resonances, Geophys. Res. Lett., 22, 2111 – 2114, doi: 10.1029/95GL01770.en_US
dc.identifier.citedreferenceSmit, G. R. ( 1968 ), Oscillatory motion of the nose region of the magnetopause, J. Geophys. Res., 73, 4990 – 4993, doi: 10.1029/JA073i015p04990.en_US
dc.identifier.citedreferenceTakahashi, K., K. Yumoto, S. G. Claudepierre, E. R. Sanchez, O. A Troshichev, and A. S. Janzhura ( 2012 ), Dependence of the amplitude of Pc5‐band magnetic field variations on the solar wind and solar activity, J. Geophys. Res., 117, A04207, doi: 10.1029/2011JA017120.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceViall, N. M., L. Kepko, and H. E. Spence ( 2009 ), Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere, J. Geophys. Res., 114, A01201, doi: 10.1029/2008JA013334.en_US
dc.identifier.citedreferenceWaters, C. L., K. Takahashi, D.‐H. Lee, and B. J. Anderson ( 2002 ), Detection of ultralow‐frequency cavity modes using spacecraft data, J. Geophys. Res., 107 ( A10 ), 1284, doi: 10.1029/2001JA000224.en_US
dc.identifier.citedreferencePlaschke, F., K.‐H. Glassmeier, D. G. Sibeck, H. U. Auster, O. D. Constantinescu, V. Angelopoulos, and W. Magnes ( 2009b ), Magnetopause surface oscillation frequencies at different solar wind conditions, Ann. Geophys., 27, 4521 – 4532, doi: 10.5194/angeo-27-4521-2009.en_US
dc.identifier.citedreferencePlaschke, F., H. Hietala, and V. Angelopoulos ( 2013 ), Anti‐sunward high‐speed jets in the subsolar magnetosheath, Ann. Geophys., 31, 1877 – 1889, doi: 10.5194/angeo-31-1877-2013.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 209, doi: 10.1006/jcph.1999.6299.en_US
dc.identifier.citedreferenceRidley, A. J., and M. W. Liemohn ( 2002 ), A model‐derived storm time asymmetric ring current driven electric field description, J. Geophys. Res., 107 ( A8 ), 1151, doi: 10.1029/2001JA000051.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.