Show simple item record

Neural Crest‐Specific TSC1 Deletion in Mice Leads to Sclerotic Craniofacial Bone Lesion

dc.contributor.authorFang, Fangen_US
dc.contributor.authorSun, Shaogangen_US
dc.contributor.authorWang, Lien_US
dc.contributor.authorGuan, Jun‐linen_US
dc.contributor.authorGiovannini, Marcoen_US
dc.contributor.authorZhu, Yuanen_US
dc.contributor.authorLiu, Feien_US
dc.date.accessioned2015-07-01T20:55:43Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationFang, Fang; Sun, Shaogang; Wang, Li; Guan, Jun‐lin ; Giovannini, Marco; Zhu, Yuan; Liu, Fei (2015). "Neural Crestâ Specific TSC1 Deletion in Mice Leads to Sclerotic Craniofacial Bone Lesion." Journal of Bone and Mineral Research 30(7): 1195-1205.en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111902
dc.description.abstractTuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either TSC1 or TSC2. TSC has high frequency of osseous manifestations such as sclerotic lesions in the craniofacial region. However, an animal model that replicates TSC craniofacial bone lesions has not yet been described. The roles of Tsc1 and the sequelae of Tsc1 dysfunction in bone are unknown. In this study, we generated a mouse model of TSC with a deletion of Tsc1 in neural crest‐derived (NCD) cells that recapitulated the sclerotic craniofacial bone lesions in TSC. Analysis of this mouse model demonstrated that TSC1 deletion led to enhanced mTORC1 signaling in NCD bones and the increase in bone formation is responsible for the aberrantly increased bone mass. Lineage mapping revealed that TSC1 deficient NCD cells overpopulated the NCD bones. Mechanistically, hyperproliferation of osteoprogenitors at an early postnatal stage accounts for the increased osteoblast pool. Intriguingly, early postnatal treatment with rapamycin, an mTORC1 inhibitor, can completely rescue the aberrant bone mass, but late treatment cannot. Our data suggest that enhanced mTOR signaling in NCD cells can increase bone mass through enlargement of the osteoprogenitor pool, which likely explains the sclerotic bone lesion observed in TSC patients. © 2015 American Society for Bone and Mineral Research.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSCLEROTICen_US
dc.subject.otherOSTEOPROGENITORen_US
dc.subject.otherTUBEROUS SCLEROSISen_US
dc.subject.othermTORC1en_US
dc.subject.otherNEURAL CRESTen_US
dc.subject.otherCRANIOFACIALen_US
dc.subject.otherRAPAMYCINen_US
dc.subject.otherOSTEOBLASTSen_US
dc.titleNeural Crest‐Specific TSC1 Deletion in Mice Leads to Sclerotic Craniofacial Bone Lesionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111902/1/jbmr2447.pdf
dc.identifier.doi10.1002/jbmr.2447en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceSoucek T, Pusch O, Wienecke R, DeClue JE, Hengstschlager M. Role of the tuberous sclerosis gene‐2 product in cell cycle control. Loss of the tuberous sclerosis gene‐2 induces quiescent cells to enter S phase. J Biol Chem 1997; 272: 29301 – 29308.en_US
dc.identifier.citedreferenceSoriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70 – 71.en_US
dc.identifier.citedreferenceLiu F, Fang F, Yuan H, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res 2013; 28: 2414 – 2430.en_US
dc.identifier.citedreferenceWang J, Xi L, Hunt JL, et al. Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res 2004; 64: 1861 – 1866.en_US
dc.identifier.citedreferenceFeldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989; 4: 3 – 11.en_US
dc.identifier.citedreferenceMcCreadie BR, Goulet RW, Feldkamp LA, Goldstein SA. Hierarchical structure of bone and micro‐computed tomography. Adv Exp Med Biol 2001; 496: 67 – 83.en_US
dc.identifier.citedreferenceKuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 1990; 8: 833 – 842.en_US
dc.identifier.citedreferenceLiu F, Lee SK, Adams DJ, Gronowicz GA, Kream BE. CREM deficiency in mice alters the response of bone to intermittent parathyroid hormone treatment. Bone 2007; 40: 1135 – 1143.en_US
dc.identifier.citedreferenceChandhoke TK, Huang YF, Liu F, et al. Osteopenia in transgenic mice with osteoblast‐targeted expression of the inducible cAMP early repressor. Bone 2008; 43: 101 – 109.en_US
dc.identifier.citedreferenceLiu F, Fang F, Yuan H, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation. J Bone Miner Res 2013.en_US
dc.identifier.citedreferenceDempster DW, Compston JE, Drezner MK, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2013; 28: 2 – 17.en_US
dc.identifier.citedreferenceZheng H, Chang L, Patel N, et al. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 2008; 13: 117 – 128.en_US
dc.identifier.citedreferenceDucy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin‐deficient mice. Nature 1996; 382: 448 – 452.en_US
dc.identifier.citedreferenceMurshed M, Schinke T, McKee MD, Karsenty G. Extracellular matrix mineralization is regulated locally; different roles of two gla‐containing proteins. J Cell Biol 2004; 165: 625 – 630.en_US
dc.identifier.citedreferenceUmeoka S, Koyama T, Miki Y, Akai M, Tsutsui K, Togashi K. Pictorial review of tuberous sclerosis in various organs. Radiographics 2008; 28: e32.en_US
dc.identifier.citedreferenceWang Y, Kim E, Wang X, et al. ERK inhibition rescues defects in fate specification of Nf1‐deficient neural progenitors and brain abnormalities. Cell 2012; 150: 816 – 830.en_US
dc.identifier.citedreferenceFingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. MTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E‐BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol 2004; 24: 200 – 216.en_US
dc.identifier.citedreferenceRachdi L, Balcazar N, Osorio‐Duque F, et al. Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1‐dependent manner. Proc Natl Acad Sci U S A 2008; 105: 9250 – 9255.en_US
dc.identifier.citedreferenceMiloloza A, Rosner M, Nellist M, Halley D, Bernaschek G, Hengstschlager M. The TSC1 gene product, hamartin, negatively regulates cell proliferation. Hum Mol Genet 2000; 9: 1721 – 1727.en_US
dc.identifier.citedreferenceJin F, Wienecke R, Xiao GH, Maize JC, Jr., DeClue JE, Yeung RS. Suppression of tumorigenicity by the wild‐type tuberous sclerosis 2 (Tsc2) gene and its C‐terminal region. Proc Natl Acad Sci U S A 1996; 93: 9154 – 9159.en_US
dc.identifier.citedreferenceMak BC, Takemaru K, Kenerson HL, Moon RT, Yeung RS. The tuberin‐hamartin complex negatively regulates beta‐catenin signaling activity. J Biol Chem 2003; 278: 5947 – 5951.en_US
dc.identifier.citedreferenceLee KW, Yook JY, Son MY, et al. Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells Dev 2010; 19: 557 – 568.en_US
dc.identifier.citedreferenceSingha UK, Jiang Y, Yu S, et al. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3‐E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem 2008; 103: 434 – 446.en_US
dc.identifier.citedreferenceOgawa T, Tokuda M, Tomizawa K, et al. Osteoblastic differentiation is enhanced by rapamycin in rat osteoblast‐like osteosarcoma (ROS 17/2.8) cells. Biochem Biophys Res Commun 1998; 249: 226 – 230.en_US
dc.identifier.citedreferenceIsomoto S, Hattori K, Ohgushi H, Nakajima H, Tanaka Y, Takakura Y. Rapamycin as an inhibitor of osteogenic differentiation in bone marrow‐derived mesenchymal stem cells. J Orthop Sci 2007; 12: 83 – 88.en_US
dc.identifier.citedreferenceShoba LN, Lee JC. Inhibition of phosphatidylinositol 3‐kinase and p70S6 kinase blocks osteogenic protein‐1 induction of alkaline phosphatase activity in fetal rat calvaria cells. J Cell Biochem 2003; 88: 1247 – 1255.en_US
dc.identifier.citedreferenceFaghihi F, Baghaban Eslaminejad M, Nekookar A, Najar M, Salekdeh GH. The effect of purmorphamine and sirolimus on osteogenic differentiation of human bone marrow‐derived mesenchymal stem cells. Biomed Pharmacother 2013; 67: 31 – 38.en_US
dc.identifier.citedreferenceMartin SK, Fitter S, Bong LF, et al. NVP‐BEZ235, a dual pan class I PI3 kinase and mTOR inhibitor, promotes osteogenic differentiation in human mesenchymal stromal cells. J Bone Miner Res 2010; 25: 2126 – 2137.en_US
dc.identifier.citedreferenceXian L, Wu X, Pang L, et al. Matrix IGF‐1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 2012; 18: 1095 – 1101.en_US
dc.identifier.citedreferenceKwiatkowski DJ, Manning BD. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 14 Spec No. 2005; 2: R251 – R258.en_US
dc.identifier.citedreferenceLaplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell 2012; 149: 274 – 293.en_US
dc.identifier.citedreferenceTee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase‐activating protein complex toward Rheb. Curr Biol 2003; 13: 1259 – 1268.en_US
dc.identifier.citedreferenceHolt JF, Dickerson WW. The osseous lesions of tuberous sclerosis. Radiology 1952; 58: 1 – 8.en_US
dc.identifier.citedreferenceMorris BS, Garg A, Jadhav PJ. Tuberous sclerosis: a presentation of less‐commonly encountered stigmata. Australas Radiol 2002; 46: 426 – 430.en_US
dc.identifier.citedreferenceKobayashi T, Minowa O, Sugitani Y, et al. A germ‐line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A 2001; 98: 8762 – 8767.en_US
dc.identifier.citedreferenceKobayashi T, Minowa O, Kuno J, Mitani H, Hino O, Noda T. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ‐line Tsc2 mutation in mice. Cancer Res 1999; 59: 1206 – 1211.en_US
dc.identifier.citedreferenceKwiatkowski DJ, Zhang H, Bandura JL, et al. A mouse model of TSC1 reveals sex‐dependent lethality from liver hemangiomas, and up‐regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 2002; 11: 525 – 534.en_US
dc.identifier.citedreferenceRiddle RC, Frey JL, Tomlinson RE, et al. Tsc2 is a molecular checkpoint controlling osteoblast development and glucose homeostasis. Mol Cell Biol 2014.en_US
dc.identifier.citedreferenceJiang X, Iseki S, Maxson RE, Sucov HM, Morriss‐Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol 2002; 241: 106 – 116.en_US
dc.identifier.citedreferenceGiovannini M, Robanus‐Maandag E, van der Valk M, et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 2000; 14: 1617 – 1630.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.