Show simple item record

Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC

dc.contributor.authorJian, L. K.en_US
dc.contributor.authorMacNeice, P. J.en_US
dc.contributor.authorTaktakishvili, A.en_US
dc.contributor.authorOdstrcil, D.en_US
dc.contributor.authorJackson, B.en_US
dc.contributor.authorYu, H.‐s.en_US
dc.contributor.authorRiley, P.en_US
dc.contributor.authorSokolov, I. V.en_US
dc.contributor.authorEvans, R. M.en_US
dc.date.accessioned2015-07-01T20:55:52Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationJian, L. K.; MacNeice, P. J.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.‐s. ; Riley, P.; Sokolov, I. V.; Evans, R. M. (2015). "Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC." Space Weather 13(5): 316-338.en_US
dc.identifier.issn1542-7390en_US
dc.identifier.issn1542-7390en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111912
dc.description.abstractMultiple coronal and heliospheric models have been recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wang‐Sheeley‐Arge (WSA)‐Enlil model, MHD‐Around‐a‐Sphere (MAS)‐Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. To investigate the effects of photospheric magnetograms from different sources, different coronal models, and different model versions on the model performance, we run these models in 10 combinations. Choosing seven Carrington rotations in 2007 as the time window, we compare the modeling results with the Operating Mission as Nodes on the Internet data for near‐Earth space environment during the late declining phase of solar cycle 23. Visual comparison is proved to be a necessary addition to the quantitative assessment of the models' capabilities in reproducing the time series and statistics of solar wind parameters. The MAS‐Enlil model captures the time patterns of solar wind parameters better, while the WSA‐Enlil model matches with the time series of normalized solar wind parameters better. Models generally overestimate slow wind temperature and underestimate fast wind temperature and magnetic field. Using improved algorithms, we have identified magnetic field sector boundaries (SBs) and slow‐to‐fast stream interaction regions (SIRs) as focused structures. The success rate of capturing them and the time offset vary largely with models. For this quiet period, the new version of MAS‐Enlil model works best for SBs, while heliospheric tomography works best for SIRs. The new version of SWMF with more physics added needs more development. General strengths and weaknesses for each model are diagnosed to provide an unbiased reference to model developers and users.Key PointsPerformance metrics for solar wind simulation are developedTen model combinations are validated with strengths and weaknesses diagnosedStream interactions are captured 30–80% of the time and by 0.5–2.5 days offen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAIPen_US
dc.subject.otherspace weather forecastingen_US
dc.subject.othersolar winden_US
dc.subject.othermodelsen_US
dc.titleValidation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMCen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111912/1/swe20222.pdf
dc.identifier.doi10.1002/2015SW001174en_US
dc.identifier.sourceSpace Weatheren_US
dc.identifier.citedreferenceRiley, P., J. A. Linker, Z. Mikić, D. Odstrcil, and V. J. Pizzo ( 2002 ), Evidence of posteruption reconnection associated with coronal mass ejections in the solar wind, Astrophys. J., 578, 972 – 978, doi: 10.1086/342608.en_US
dc.identifier.citedreferenceRiley, P., R. Lionello, J. A. Linker, Z. Mikić, J. Luhmann, and J. Wijaya ( 2011 ), Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval, Sol. Phys., 274, 361 – 377, doi: 10.1007/s11207-010-9698-x.en_US
dc.identifier.citedreferenceRussell, C. T., and R. L. McPherron ( 1973 ), The magnetotail and substorms, Space Sci. Rev., 15, 205 – 266, doi: 10.1007/BF00169321.en_US
dc.identifier.citedreferenceSchatten, K. H. ( 1971 ), Current sheet magnetic model for the solar corona, Cosmic Electrodyn., 2, 232 – 245.en_US
dc.identifier.citedreferenceSchatten, K. H., J. M. Wilcox, and N. F. Ness ( 1969 ), A model of interplanetary and coronal magnetic fields, Sol. Phys., 6, 442 – 455, doi: 10.1007/BF00146478.en_US
dc.identifier.citedreferenceScherrer, P. H., et al. ( 1995 ), The solar oscillation investigation—Michelson Doppler imager, Sol. Phys., 162, 129 – 188, doi: 10.1007/BF00733429.en_US
dc.identifier.citedreferenceSmith, E. J., and J. H. Wolfe ( 1976 ), Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11, Geophys. Res. Lett., 3, 137 – 140, doi: 10.1029/GL003i003p00137.en_US
dc.identifier.citedreferenceSokolov, I. V., B. van der Holst, R. Oran, C. Downs, I. Roussev, M. Jin, W. B. Manchester IV, R. M. Evans, and T. I. Gombosi ( 2013 ), Magnetohydrodynamic waves and coronal heating: Unifying empirical and MHD turbulence models, Astrophys. J., 764, 23, doi: 10.1088/0004-637X/764/1/23.en_US
dc.identifier.citedreferenceSwarup, G., N. V. G. Sarma, M. N. Joshi, V. K. Kapahi, D. S. Bagri, S. H. Damle, S. Ananthakrishnan, V. Balasubramanian, S. S. Bhave, and R. P. Sinha ( 1971 ), Large steerable radio telescope at Ootacamund, India, Nat. Phys. Sci., 230, 185 – 188, doi: 10.1038/physci230185a0.en_US
dc.identifier.citedreferenceTokumaru, M. ( 2013 ), Three‐dimensional exploration of the solar wind using observations of interplanetary scintillation, Proc. Jpn. Acad. Ser. B, 89, 67 – 79, doi: 10.2183/pjab.89.67.en_US
dc.identifier.citedreferenceTokumaru, M., M. Kojima, K. Fujiki, K. Maruyama, Y. Maruyama, H. Ito, and T. Iju ( 2011 ), A newly developed UHF radiotelescope for interplanetary scintillation observations: Solar Wind Imaging Facility, Radio Sci., 46, RS0F02, doi: 10.1029/2011RS004694.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceUlrich, R. K., S. Evans, J. E. Boyden, and L. Webster ( 2002 ), Mount Wilson synoptic magnetic fields: Improved instrumentation, calibration, and analysis applied to the 14 July 2000 flare and to the evolution of the dipole field, Astrophys. J. Suppl., 139, 259 – 279, doi: 10.1086/337948.en_US
dc.identifier.citedreferencevan der Holst, B., W. B. Manchester IV, R. A. Frazin, A. M. Vásquez, G. Tóth, and T. I. Gombosi ( 2010 ), A data‐driven, two‐temperature solar wind model with Alfvén waves, Astrophys. J., 725, 1373 – 1383, doi: 10.1088/0004-637X/725/1/1373.en_US
dc.identifier.citedreferencevan der Holst, B., I. V. Sokolov, X. Meng, M. Jin, W. B. Manchester IV, G. Tóth, and T. I. Gombosi ( 2014 ), Alfvén Wave Solar Model (AWSoM): Coronal heating, Astrophys. J., 782, 81, doi: 10.1088/0004-637X/782/2/81.en_US
dc.identifier.citedreferencevan Haarlem, M. P., et al. ( 2013 ), LOFAR: The low‐frequency array, Astron. Astrophys., 556, 53, doi: 10.1051/0004-6361/201220873.en_US
dc.identifier.citedreferenceVandas, M., and D. Odstrčil ( 2000 ), Magnetic cloud evolution: A comparison of analytical and numerical solutions, J. Geophys. Res., 105, 12,605 – 12,616, doi: 10.1029/2000JA900027.en_US
dc.identifier.citedreferenceVršnak, B., M. Temmer, T. Žic, A. Taktakishvili, M. Dumbović, C. Möstl, A. M. Veronig, M. L. Mays, and D. Odstrčil ( 2014 ), Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA‐ENLIL+Cone model and analytical drag‐based model, Astrophys. J. Supp., 213, 21, doi: 10.1088/0067-0049/213/2/21.en_US
dc.identifier.citedreferenceWang, Y. M., and N. R. Sheeley Jr. ( 1990a ), Solar wind speed and coronal flux‐tube expansion, Astrophys. J., 355, 726 – 732, doi: 10.1086/168805.en_US
dc.identifier.citedreferenceWang, Y. M., and N. R. Sheeley Jr. ( 1990b ), Magnetic flux transport and the sunspot‐cycle evolution of coronal holes and their wind streams, Astrophys. J., 365, 372 – 386, doi: 10.1086/169492.en_US
dc.identifier.citedreferenceWang, Y. M., and N. R. Sheeley Jr. ( 1992 ), On potential field models of the solar corona, Astrophys. J., 392, 310 – 319, doi: 10.1086/171430.en_US
dc.identifier.citedreferenceWilson, G. R., D. R. Weimer, J. O. Wise, and F. A. Marcos ( 2006 ), Response of the thermosphere to Joule heating and particle precipitation, J. Geophys. Res., 111, A10314, doi: 10.1029/2005JA011274.en_US
dc.identifier.citedreferenceXu, J., W. Wang, J. Lei, E. K. Sutton, and G. Chen ( 2011 ), The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits, J. Geophys. Res., 116, A02315, doi: 10.1029/2010JA015995.en_US
dc.identifier.citedreferenceZhang, X.‐Y., and M. B. Moldwin ( 2014 ), The source, statistical properties, and geoeffectiveness of long‐duration southward interplanetary magnetic field intervals, J. Geophys. Res. Space Physics, 119, 658 – 669, doi: 10.1002/2013JA018937.en_US
dc.identifier.citedreferenceZhao, X., and J. T. Hoeksema ( 1995 ), Prediction of the interplanetary magnetic field strength, J. Geophys. Res., 100, 19 – 33, doi: 10.1029/94JA02266.en_US
dc.identifier.citedreferenceZheng, Y., et al. ( 2013 ), Forecasting propagation and evolution of CMEs in an operational setting: What has been learned, Space Weather, 11, 1 – 18, doi: 10.1002/swe.20096.en_US
dc.identifier.citedreferenceAltschuler, M. A., and G. Newkirk Jr. ( 1969 ), Magnetic fields and the structure of the solar corona, Sol. Phys., 9, 131 – 149, doi: 10.1007/BF00145734.en_US
dc.identifier.citedreferenceAnderson, R. L., G. H. Born, and J. M. Forbes ( 2009 ), Sensitivity of orbit predictions to density variability, J. Spacecr. Rockets, 46, 1214 – 1230, doi: 10.2514/1.42138.en_US
dc.identifier.citedreferenceArge, C. N., and V. J. Pizzo ( 2000 ), Improvement in the prediction of solar wind conditions using real‐time solar magnetic field updates, J. Geophys. Res., 105, 10,465 – 10,479, doi: 10.1029/1999JA000262.en_US
dc.identifier.citedreferenceArge, C. N., D. Odstrcil, V. J. Pizzo, and L. Mayer ( 2002 ), Improved method for specifying solar wind speed near the Sun, in Solar Wind Ten, AIP Conf. Proc, vol. 679, edited by M. Velli and R. Bruno, pp. 190 – 193, AIP, Melville, New York, doi: 10.1063/1.1618574.en_US
dc.identifier.citedreferenceArge, C. N., C. J. Henney, J. Koller, C. R. Compeau, S. Young, D. MacKenzie, A. Fay, and J. W. Harvey ( 2010 ), Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model, in Solar Wind 12, AIP Conf. Proc, vol. 1216, edited by M. Maksimovic et al., pp. 343 – 346, AIP, Melville, New York, doi: 10.1063/1.3395870.en_US
dc.identifier.citedreferenceArge, C. N., C. J. Henney, J. Koller, W. A. Toussaint, J. W. Harvey, and S. Young ( 2011 ), Improving data drivers for coronal and solar wind models, in 5th International Conference of Numerical Modeling of Space Plasma Flows: ASTRONUM‐2010, ASP Conf. Ser, vol. 444, edited by N. V. Pogorelov, E. Audit, and G. P. Zank, pp. 99 – 104, ASP, San Francisco, Calif.en_US
dc.identifier.citedreferenceArge, C. N., C. J. Henney, I. G. Hernandez, W. A. Toussaint, J. Koller, and H. C. Godinez ( 2013 ), Modeling the corona and solar wind using ADAPT maps that include far‐side observations, in Solar Wind 13, AIP Conf. Proc, vol. 1539, edited by G. P. Zank et al., pp. 11 – 14, AIP, Melville, New York, doi: 10.1063/1.4810977.en_US
dc.identifier.citedreferenceBelcher, J. W., and L. Davis Jr. ( 1971 ), Large‐amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534 – 3563, doi: 10.1029/JA076i016p03534.en_US
dc.identifier.citedreferenceBrecht, S. H., J. Lyon, J. A. Fedder, and K. Hain ( 1981 ), A simulation study of east–west IMF effects on the magnetosphere, Geophys. Res. Lett., 8, 397 – 400, doi: 10.1029/GL008i004p00397.en_US
dc.identifier.citedreferenceCase, A. W., H. E. Spence, M. J. Owens, P. Riley, and D. Odstrcil ( 2008 ), Ambient solar wind's effect on ICME transit time, Geophys. Res. Lett., 35, L15105, doi: 10.1029/2008GL034493.en_US
dc.identifier.citedreferenceChen, G.‐M., J. Xu, W. Wang, and A. G. Burns ( 2014 ), A comparison of the effects of CIR‐ and CME‐induced geomagnetic activity on thermospheric densities and spacecraft orbits: Statistical studies, J. Geophys. Res. Space Physics, 119, 7928 – 7939, doi: 10.1002/2014JA019831.en_US
dc.identifier.citedreferenceColaninno, R. C., A. Vourlidas, and C. C. Wu ( 2013 ), Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging, J. Geophys. Res. Space Physics, 118, 6866 – 6879, doi: 10.1002/2013JA019205.en_US
dc.identifier.citedreferenceColes, W. A. ( 1978 ), Interplanetary scintillation, Space Sci. Rev., 21, 411 – 425, doi: 10.1007/BF00173067.en_US
dc.identifier.citedreferenceCollinson, G. A., et al. ( 2015 ), The Impact of a Slow Interplanetary Coronal Mass Ejection (ICME) on Venus, J. Geophys. Res. Space Physics, doi: 10.1002/2014JA020616, in press.en_US
dc.identifier.citedreferenceCrooker, N. U., J. T. Gosling, and S. W. Kahler ( 1998 ), Magnetic clouds at sector boundaries, J. Geophys. Res., 103, 301 – 306, doi: 10.1029/97JA02774.en_US
dc.identifier.citedreferenceEyles, C. J., G. M. Simnett, M. P. Cooke, B. V. Jackson, A. Buffington, P. P. Hick, N. R. Waltham, J. M. King, P. A. Anderson, and P. E. Holladay ( 2003 ), The Solar Mass Ejection Imager (SMEI), Sol. Phys., 217, 319 – 347, doi: 10.1023/B:SOLA.0000006903.75671.49.en_US
dc.identifier.citedreferenceFedder, J. A., J. G. Lyon, S. P. Slinker, and C. M. Mobarry ( 1995 ), Topological structure of the magnetotail as a function of interplanetary magnetic field direction, J. Geophys. Res., 100, 3613 – 3621, doi: 10.1029/94JA02577.en_US
dc.identifier.citedreferenceGombosi, T. I., D. L. De Zeeuw, C. P. T. Groth, K. G. Powell, C. R. Clauer, and P. Song ( 2001 ), From Sun to Earth: Multiscale MHD simulations of space weather, in Space Weather, Geophys. Monogr. Ser, vol. 125, edited by P. Song, H. J. Singer, and G. L. Siscoe, pp. 169 – 176, AGU, Washington, D. C., doi: 10.1029/GM125p0169.en_US
dc.identifier.citedreferenceGombosi, T. I., et al. ( 2004 ), Solution‐adaptive magnetohydrodynamics for space plasmas: Sun‐to‐Earth simulations, Comput. Sci. Eng., 6, 14 – 35, doi: 10.1109/MCISE.2004.1267603.en_US
dc.identifier.citedreferenceGonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas ( 1994 ), What is a geomagnetic storm?, J. Geophys. Res., 99, 5771 – 5792, doi: 10.1029/93JA02867.en_US
dc.identifier.citedreferenceGonzález‐Esparza, J. A., A. Carrillo, E. Andrade, P. Sierra, S. Vazquez, C. Rodríguez, R. Pérez‐Enríquez, S. Kurtz, and X. Blanco‐Cano ( 2006 ), Calibration and testing of the MEXART antenna using solar transients, Adv. Space Res., 38, 1824 – 1827, doi: 10.1016/j.asr.2005.09.032.en_US
dc.identifier.citedreferenceGopalswamy, N., P. Mäkelä, H. Xie, S. Akiyama, and S. Yashiro ( 2009 ), CME interactions with coronal holes and their interplanetary consequences, J. Geophys. Res., 114, A00A22, doi: 10.1029/2008JA013686.en_US
dc.identifier.citedreferenceGosling, J. T., and V. J. Pizzo ( 1999 ), Formation and evolution of corotating interaction regions and their three dimensional structure, Space Sci. Rev., 89, 21 – 52, doi: 10.1023/A:1005291711900.en_US
dc.identifier.citedreferenceHarvey, J. W., et al. ( 1996 ), The Global Oscillation Network Group (GONG) project, Science, 272, 1284 – 1286, doi: 10.1126/science.272.5266.1284.en_US
dc.identifier.citedreferenceHeppner, J. P. ( 1972 ), Polar‐cap electric field distributions related to the interplanetary magnetic field direction, J. Geophys. Res., 77, 4877 – 4887, doi: 10.1029/JA077i025p04877.en_US
dc.identifier.citedreferenceHewish, A., P. F. Scott, and D. Wills ( 1964 ), Interplanetary scintillation of small diameter radio sources, Nature, 203, 1214 – 1217, doi: 10.1038/2031214a0.en_US
dc.identifier.citedreferenceHundhausen, A. J. ( 1993 ), Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984–1989, J. Geophys. Res., 98, 13,177 – 13,200, doi: 10.1029/93JA00157.en_US
dc.identifier.citedreferenceJackson, B. V., P. L. Hick, M. Kojima, and A. Yokobe ( 1997 ), Heliospheric tomography using interplanetary scintillation observations, Phys. Chem. Earth, 22, 425 – 434, doi: 10.1016/S0079-1946(97)00170-5.en_US
dc.identifier.citedreferenceJackson, B. V., P. L. Hick, M. Kojima, and A. Yokobe ( 1998 ), Heliospheric tomography using interplanetary scintillation observations: 1. Combined Nagoya and Cambridge data, J. Geophys. Res., 103, 12,049 – 12,067, doi: 10.1029/97JA02528.en_US
dc.identifier.citedreferenceJackson, B. V., et al. ( 2004 ), The Solar Mass‐Ejection Imager (SMEI) mission, Sol. Phys., 225, 177 – 207, doi: 10.1007/s11207-004-2766-3.en_US
dc.identifier.citedreferenceJackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, M. Tokumaru, M. Kojima, and K. Fujiki ( 2011 ), Three‐dimensional reconstruction of heliospheric structure using iterative tomography: A review, J. Atoms. Sol. Terr. Phys., 73, 1214 – 1227, doi: 10.1016/j.jastp.2010.10.007.en_US
dc.identifier.citedreferenceJackson, B. V., et al. ( 2015 ), The UCSD kinematic IPS solar wind boundary and its use in the ENLIL 3‐D MHD prediction model, Space Weather, 13, 104 – 115, doi: 10.1002/2014SW001130.en_US
dc.identifier.citedreferenceJian, L., C. T. Russell, J. G. Luhmann, and R. M. Skoug ( 2006 ), Properties of stream interactions at one AU during 1995–2004, Sol. Phys., 239, 337 – 392, doi: 10.1007/s11207-006-0132-3.en_US
dc.identifier.citedreferenceJian, L. K., C. T. Russell, and J. G. Luhmann ( 2011a ), Comparing solar minimum 23/24 with historical solar wind records at 1 AU, Sol. Phys., 274, 321 – 344, doi: 10.1007/s11207-011-9737-2.en_US
dc.identifier.citedreferenceJian, L. K., C. T. Russell, J. G. Luhmann, P. J. MacNeice, D. Odstrcil, P. Riley, J. A. Linker, R. M. Skoug, and J. T. Steinberg ( 2011b ), Comparison of observations at ACE and Ulysses with Enlil model results: Stream interaction regions during Carrington rotations 2016–2018, Sol. Phys., 273, 179 – 203, doi: 10.1007/s11207-011-9858-7.en_US
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparison of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.en_US
dc.identifier.citedreferenceLee, C. O., J. G. Luhmann, D. Odstrcil, P. J. MacNeice, I. de Pater, P. Riley, and C. N. Arge ( 2009 ), The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations, Sol. Phys., 254, 155 – 183, doi: 10.1007/s11207-008-9280-y.en_US
dc.identifier.citedreferenceLee, C. O., J. G. Luhmann, J. T. Hoeksema, X. Sun, C. N. Arge, and I. de Pater ( 2011 ), Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered, Sol. Phys., 269, 367 – 388, doi: 10.1007/s11207-010-9699-9.en_US
dc.identifier.citedreferenceLinker, J. A., Z. Mikić, and D. D. Schnack ( 1996 ), Global coronal modeling and space weather prediction, in Solar Drivers of Interplanetary and Terrestrial Disturbances, ASP Conf. Ser, vol. 95, edited by K. S. Balasubramaniam, S. L. Keil, and R. N. Smartt, pp. 208 – 218, ASP, San Francisco, Calif.en_US
dc.identifier.citedreferenceLinker, J. A., Z. Mikić, R. Lionello, P. Riley, T. Amari, and D. Odstrcil ( 2003 ), Flux cancellation and coronal mass ejections, Phys. Plasmas, 10, 1971 – 1978, doi: 10.1063/1.1563668.en_US
dc.identifier.citedreferenceLionello, R., J. A. Linker, and Z. Mikić ( 2009 ), Multispectral emission of the Sun during the first whole Sun month: Magnetohydrodynamic simulations, Astrophys. J., 690, 902 – 912, doi: 10.1088/0004-637X/690/1/902.en_US
dc.identifier.citedreferenceLopez, R. E. ( 1987 ), Solar‐cycle invariance in the solar wind proton temperature relationships, J. Geophys. Res., 92, 11,189 – 11,194, doi: 10.1029/JA092iA10p11189.en_US
dc.identifier.citedreferenceMacNeice, P. ( 2009a ), Validation of community models: Identifying events in space weather model timelines, Space Weather, 7, S06004, doi: 10.1029/2009SW000463.en_US
dc.identifier.citedreferenceMacNeice, P. ( 2009b ), Validation of community models: 2 Development of a baseline using the Wang‐Sheeley‐Arge model, Space Weather, 7, S12002, doi: 10.1029/2009SW000489.en_US
dc.identifier.citedreferenceManchester, W. B., J. U. Kozyra, S. T. Lepri, and B. Lavraud ( 2014 ), Simulation of magnetic cloud erosion during propagation, J. Geophys. Res. Space Physics, 119, 5499 – 5464, doi: 10.1002/2014JA019882.en_US
dc.identifier.citedreferenceManoharan, P. K. ( 2010 ), Ooty interplanetary scintillation—Remote‐sensing observations and analysis of coronal mass ejections in the heliosphere, Sol. Phys., 265, 137 – 157, doi: 10.1007/s11207-010-9593-5.en_US
dc.identifier.citedreferenceManoharan, P. K., S. Ananthakrishnan, M. Dryer, T. R. Detman, H. Leinbach, M. Kojima, T. Watanabe, and J. Kahn ( 1995 ), Solar wind velocity and normalized scintillation index from single‐station IPS observations, Sol. Phys., 156, 377 – 393, doi: 10.1007/BF00670233.en_US
dc.identifier.citedreferenceMays, M. L., et al. ( 2015 ), Ensemble modeling of CMEs using the WSA‐ENLIL+Cone model, Sol. Phys., doi: 10.1007/s11207-015-0692-1, in press.en_US
dc.identifier.citedreferenceMikić, Z., and J. A. Linker ( 1994 ), Disruption of coronal magnetic field arcades, Astrophys. J., 430, 898 – 912, doi: 10.1086/174460.en_US
dc.identifier.citedreferenceMikić, Z., and J. A. Linker ( 1996 ), The large‐scale structure of the solar corona and inner heliosphere, in Solar Wind Eight, AIP Conf. Proc, vol. 382, edited by D. Winterhalter, et al., pp. 104 – 107, AIP, Woodbury, NY, doi: 10.1063/1.51370.en_US
dc.identifier.citedreferenceMillward, G., D. Biesecker, V. Pizzo, and C. A. Koning ( 2013 ), An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA‐Enlil heliospheric model, Space Weather, 11, 57 – 68, doi: 10.1002/swe.20024.en_US
dc.identifier.citedreferenceMiyoshi, Y., and R. Kataoka ( 2005 ), Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions, Geophys. Res. Lett., 32, L21105, doi: 10.1029/2005GL024590.en_US
dc.identifier.citedreferenceOdstrčil, D. ( 1994 ), Interaction of solar wind streams and related small structures, J. Geophys. Res., 99, 17,653 – 17,671, doi: 10.1029/94JA01225.en_US
dc.identifier.citedreferenceOdstrcil, D. ( 2003 ), Modeling 3‐D solar wind structure, Adv. Space Res., 32, 497 – 506, doi: 10.1016/S0273-1177(03)00332-6.en_US
dc.identifier.citedreferenceOdstrčil, D., and V. J. Pizzo ( 1999a ), Three‐dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 1. CME launched within the streamer belt, J. Geophys. Res., 104, 483 – 492, doi: 10.1029/1998JA900019.en_US
dc.identifier.citedreferenceOdstrčil, D., and V. J. Pizzo ( 1999b ), Three‐dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 2. CME launched adjacent to the streamer belt, J. Geophys. Res., 104, 493 – 503, doi: 10.1029/1998JA900038.en_US
dc.identifier.citedreferenceOdstrčil, D., M. Dryer, and Z. Smith ( 1996 ), Propagation of an interplanetary shock along the heliospheric plasma sheet, J. Geophys. Res., 101, 19,973 – 19,986, doi: 10.1029/96JA00479.en_US
dc.identifier.citedreferenceOdstrcil, D., J. A. Linker, R. Lionello, Z. Mikić, P. Riley, V. J. Pizzo, and J. G. Luhmann ( 2002 ), Merging of coronal and heliospheric numerical two dimensional MHD models, J. Geophys. Res., 107, 1493, doi: 10.1029/2002JA009334.en_US
dc.identifier.citedreferenceOdstrcil, D., V. J. Pizzo, J. A. Linker, P. Riley, R. Lionello, and Z. Mikić ( 2004 ), Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes, J. Atoms. Sol. Terr. Phys., 66, 1311 – 1320, doi: 10.1016/j.jastp.2004.04.007.en_US
dc.identifier.citedreferenceOwens, M. J., C. N. Arge, H. E. Spence, and A. Pembroke ( 2005 ), An event‐based approach to validating solar wind speed predictions: High‐speed enhancements in the Wang‐Sheeley‐Arge model, J. Geophys. Res., 110, A12105, doi: 10.1029/2005JA011343.en_US
dc.identifier.citedreferenceOwens, M. J., H. E. Spence, S. McGregor, W. J. Hughes, J. M. Quinn, C. N. Arge, P. Riley, J. Linker, and D. Odstrcil ( 2008 ), Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics‐based schemes with 8 years of L1 observations, Space Weather, 6, S08001, doi: 10.1029/2007SW000380.en_US
dc.identifier.citedreferencePierce, A. K. ( 1969 ), The solar program of the Kitt peak national observatory, Sol. Phys., 6, 498 – 503, doi: 10.1007/BF00146486.en_US
dc.identifier.citedreferencePizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, and D. Odstrcil ( 2011 ), Wang‐Sheeley‐Arge‐Enlil Cone model transitions to operations, Space Weather, 9, S03004, doi: 10.1029/2011SW000663.en_US
dc.identifier.citedreferencePoduval, B., and X. P. Zhao ( 2014 ), Validating solar wind prediction using the current sheet source surface model, Astrophys. J. Lett., 782, L22.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309, doi: 10.1006/jcph.1999.6299.en_US
dc.identifier.citedreferenceRiley, P., J. A. Linker, and Z. Mikić ( 2001a ), An empirically‐driven global MHD model of the solar corona and inner heliosphere, J. Geophys. Res., 106, 15,889 – 15,901, doi: 10.1029/2000JA000121.en_US
dc.identifier.citedreferenceRiley, P., J. A. Linker, Z. Mikić, and R. Lionello ( 2001b ), MHD modeling of the solar corona and inner heliosphere: Comparison with observations, in Space Weather, Geophys. Monogr. Ser, vol. 125, edited by P. Song, H. J. Singer, and G. L. Siscoe, pp. 159 – 167, AGU, Washington, D.C., doi: 10.1029/GM125p0159.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.