Show simple item record

Self‐consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere

dc.contributor.authorRubin, M.en_US
dc.contributor.authorJia, X.en_US
dc.contributor.authorAltwegg, K.en_US
dc.contributor.authorCombi, M. R.en_US
dc.contributor.authorDaldorff, L. K. S.en_US
dc.contributor.authorGombosi, T. I.en_US
dc.contributor.authorKhurana, K.en_US
dc.contributor.authorKivelson, M. G.en_US
dc.contributor.authorTenishev, V. M.en_US
dc.contributor.authorTóth, G.en_US
dc.contributor.authorHolst, B.en_US
dc.contributor.authorWurz, P.en_US
dc.date.accessioned2015-07-01T20:55:53Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationRubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K.; Kivelson, M. G.; Tenishev, V. M.; Tóth, G. ; Holst, B.; Wurz, P. (2015). "Selfâ consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere." Journal of Geophysical Research: Space Physics 120(5): 3503-3524.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111914
dc.description.abstractThe Jovian moon, Europa, hosts a thin neutral gas atmosphere, which is tightly coupled to Jupiter's magnetosphere. Magnetospheric ions impacting the surface sputter off neutral atoms, which, upon ionization, carry currents that modify the magnetic field around the moon. The magnetic field in the plasma is also affected by Europa's induced magnetic field. In this paper we investigate the environment of Europa using our multifluid MHD model and focus on the effects introduced by both the magnetospheric and the pickup ion populations. The model self‐consistently derives the electron temperature that governs the electron impact ionization process, which is the major source of ionization in this environment. The resulting magnetic field is compared to measurements performed by the Galileo magnetometer, the bulk properties of the modeled thermal plasma population is compared to the Galileo Plasma Subsystem observations, and the modeled surface precipitation fluxes are compared to Galileo Ultraviolet Spectrometer observations. The model shows good agreement with the measured magnetic field and reproduces the basic features of the plasma interaction observed at the moon for both the E4 and the E26 flybys of the Galileo spacecraft. The simulation also produces perturbations asymmetric about the flow direction that account for observed asymmetries.Key PointsFirst multifluid MHD simulation of Europa's plasma interaction presentedMatches plasma and magnetic field observations during Galileo E4 and E26 flybysPlasma flow and temperatures different for magnetospheric and pick up ionsen_US
dc.publisherAcademic Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherJovian magnetosphereen_US
dc.subject.otherplasma interactionen_US
dc.subject.othermultifluid MHDen_US
dc.subject.otherEuropaen_US
dc.titleSelf‐consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111914/1/jgra51773.pdf
dc.identifier.doi10.1002/2015JA021149en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRusanov, V. V. ( 1961 ), Calculation of interaction of non‐steady shock waves with obstacles, J. Comput. Math. Phys., 1, 267.en_US
dc.identifier.citedreferencePaterson, W. R., L. A. Frank, and K. L. Ackerson ( 1999 ), Galileo plasma observations at Europa: Ion energy spectra and moments, J. Geophys. Res., 104, 22,779 – 22,792, doi: 10.1029/1999JA900191.en_US
dc.identifier.citedreferencePlainaki, C., A. Milillo, A. Mura, S. Orsini, and T. Cassidy ( 2010 ), Neutral particle release from Europa's surface, Icarus, 210, 385 – 395.en_US
dc.identifier.citedreferencePlainaki, C., A. Milillo, A. Mura, S. Orsini, S. Massetti, and T. Cassidy ( 2012 ), The role of sputtering and radiolysis in the generation of Europa exosphere, Icarus, 218, 956 – 966.en_US
dc.identifier.citedreferencePospieszalska, M. K., and R. E. Johnson ( 1989 ), Magnetospheric ion bombardment profiles of satellites—Europa and Dione, Icarus, 78, 1 – 13.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceRoth, L., J. Saur, K. D. Retherford, D. F. Strobel, P. D. Feldman, M. A. McGrath, and F. Nimmo ( 2014 ), Transient water vapor at Europa's South Pole, Science, 343 ( 6167 ), 171 – 174.en_US
dc.identifier.citedreferenceRubin, M., M. R. Combi, L. K. S. Daldorff, T. I. Gombosi, K. C. Hansen, Y. Shou, V. M. Tenishev, G. Toth, B. van der Holst, and K. Altwegg ( 2014a ), Comet 1P/Halley multifluid MHD model for the Giotto fly‐by, Astrophys. J. Lett., 781 ( 2 ), 86 – 98, doi: 10.1088/0004-637x/781/2/86.en_US
dc.identifier.citedreferenceRubin, M., et al. ( 2014b ), Plasma environment of a weak comet—Predictions for Comet 67P/Churyumov–Gerasimenko from multifluid‐MHD and Hybrid models, Icarus, 242, 38 – 49, doi: 10.1016/j.icarus.2014.07.021.en_US
dc.identifier.citedreferenceSaad, Y., and M. H. Schultz ( 1986 ), GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 ( 3 ), 856 – 869, doi: 10.1137/0907058.en_US
dc.identifier.citedreferenceSamson, J. A. R., and J. L. Gardner ( 1975 ), On the ionization potential of molecular oxygen, Can. J. Phys., 53 ( 19 ), 1948 – 1952, doi: 10.1139/p75-244.en_US
dc.identifier.citedreferenceSaur, J., D. F. Strobel, and F. M. Neubauer ( 1998 ), Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere, J. Geophys. Res., 103, 19,947 – 19,962, doi: 10.1029/97JE03556.en_US
dc.identifier.citedreferenceSaur, J., P. D. Feldman, L. Roth, F. Nimmo, D. F. Strobel, K. D. Retherford, M. A. McGrath, N. Schilling, J.‐C. Gérard, and D. Grodent ( 2011 ), Hubble Space Telescope/Advanced Camera for surveys observations of Europa's atmospheric ultraviolet emission at eastern elongation, Astrophys. J., 738, 153.en_US
dc.identifier.citedreferenceSchilling, N. ( 2006 ), Time varying interaction of Europa's atmosphere–ionosphere and it's conducting ocean with the Jovian magnetosphere, PhD thesis, Univ. of Cologne.en_US
dc.identifier.citedreferenceSchilling, N., F. M. Neubauer, and J. Saur ( 2008 ), Influence of the internally induced magnetic field on the plasma interaction of Europa, J. Geophys. Res., 113, A03203, doi: 10.1029/2007JA012842.en_US
dc.identifier.citedreferenceSchreier, R., A. Eviatar, V. M. Vasyliunas, and J. D. Richardson ( 1993 ), Modeling the Europa plasma torus, J. Geophys. Res., 98, 21,231 – 21,243, doi: 10.1029/93JA02585.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceShematovich, V. I., R. E. Johnson, J. F. Cooper, and M. C. Wong ( 2005 ), Surface‐bounded atmosphere of Europa, Icarus, 173, 480 – 498.en_US
dc.identifier.citedreferenceShi, M., R. A. Baragiola, D. E. Grosjean, R. E. Johnson, S. Jurac, and J. Schou ( 1995 ), Sputtering of water ice surfaces and the production of extended neutral atmospheres, J. Geophys. Res., 100 ( E12 ), 26,387 – 26,395, doi: 10.1029/95JE03099.en_US
dc.identifier.citedreferenceSmyth, W. H., and M. L. Marconi ( 2006 ), Europa's atmosphere, gas tori, and magnetospheric implications, Icarus, 181, 510 – 526.en_US
dc.identifier.citedreferenceSpencer, J. R., L. K. Tamppari, T. Z. Martin, and L. D. Travis ( 1999 ), Temperatures on Europa from Galileo photopolarimeter‐radiometer: Nighttime thermal anomalies, Science, 284, 1514 – 1516.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceTruscott, P., D. Heynderickx, A. Sicard‐Piet, and S. Bourdarie ( 2011 ), Simulation of the radiation environment near Europa using the geant4‐based PLANETOCOSMICS‐J model, IEEE Trans. Nucl. Sci., 58, 2776 – 2784.en_US
dc.identifier.citedreferencevan der Holst, B., et al. ( 2011 ), CRASH: A Block‐adaptive‐mesh Code for Radiative Shock Hydrodynamics—Implementation and verification, Astrophys. J. Supp., 194 ( 2 ), 23.en_US
dc.identifier.citedreferencevan der Holst, B., I. V. Sokolov, X. Meng, M. Jin, W. B. Manchester, G. Tóth, and T. I. Gombosi ( 2014 ), Alfvén wave solar model (AWSoM): Coronal heating, Astrophys. J. Lett., 782 ( 2 ), 81.en_US
dc.identifier.citedreferenceVolwerk, M., M. G. Kivelson, and K. K. Khurana ( 2001 ), Wave activity in Europa's wake: Implications for ion pickup, J. Geophys. Res., 106, 26,033 – 26,048, doi: 10.1029/2000JA000347.en_US
dc.identifier.citedreferenceVolwerk, M., K. Khurana, and M. Kivelson ( 2007 ), Europa's Alfvén wing: Shrinkage and displacement influenced by an induced magnetic field, Ann. Geophys., 25, 905 – 914.en_US
dc.identifier.citedreferenceWilliams, D. J., R. W. McEntire, S. Jaskulek, and B. Wilken ( 1992 ), The Galileo energetic particles detector, Space Sci. Rev., 60, 385 – 412.en_US
dc.identifier.citedreferenceWolff, R. S., and D. A. Mendis ( 1983 ), On the nature of the interaction of the Jovian magnetosphere with the icy Galilean satellites, J. Geophys. Res., 88, 4749 – 4769, doi: 10.1029/JA088iA06p04749.en_US
dc.identifier.citedreferenceZimmer, C., K. K. Khurana, and M. G. Kivelson ( 2000 ), Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations, Icarus, 147, 329 – 347.en_US
dc.identifier.citedreferenceBagenal, F. ( 1994 ), Empirical model of the Io plasma torus: Voyager measurements, J. Geophys. Res., 99, 11,043 – 11,062, doi: 10.1029/93JA02908.en_US
dc.identifier.citedreferenceBanks, P. M., and G. Kockarts ( 1973 ), Aeronomy Part A, Academic Press, New York/London.en_US
dc.identifier.citedreferenceBrown, M. E., and R. E. Hill ( 1996 ), Discovery of an extended sodium atmosphere around Europa, Nature, 380, 229 – 231.en_US
dc.identifier.citedreferenceCassidy, T., P. Coll, F. Raulin, R. W. Carlson, R. E. Johnson, M. J. Loeffler, K. P. Hand, and R. A. Baragiola ( 2010 ), Radiolysis and photolysis of icy satellite surfaces: Experiments and theory, Space Sci. Rev., 153, 299 – 315.en_US
dc.identifier.citedreferenceCassidy, T. A., R. E. Johnson, M. A. McGrath, M. C. Wong, and J. F. Cooper ( 2007 ), The spatial morphology of Europa's near‐surface O 2 atmosphere, Icarus, 191, 755 – 764.en_US
dc.identifier.citedreferenceCassidy, T. A., R. E. Johnson, P. E. Geissler, and F. Leblanc ( 2008 ), Simulation of Na D emission near Europa during eclipse, J. Geophys. Res., 113 E02005, doi: 10.1029/2007JE002955.en_US
dc.identifier.citedreferenceCassidy, T. A., R. E. Johnson, and O. J. Tucker ( 2009 ), Trace constituents of Europa's atmosphere, Icarus, 201, 182 – 190.en_US
dc.identifier.citedreferenceCooper, J. F., R. E. Johnson, B. H. Mauk, H. B. Garrett, and N. Gehrels ( 2001 ), Energetic ion and electron irradiation of the icy galilean satellites, Icarus, 149, 133 – 159.en_US
dc.identifier.citedreferenceFamá, M., J. Shi, and R. A. Baragiola ( 2008 ), Sputtering of ice by low‐energy ions, Surf. Sci., 602, 156 – 161.en_US
dc.identifier.citedreferenceFrank, L. A., K. L. Ackerson, J. A. Lee, M. R. English, and G. L. Pickett ( 1992 ), The plasma instrumentation for the Galileo mission, Space Sci. Rev., 60, 283 – 304.en_US
dc.identifier.citedreferenceGlocer, A., G. Tóth, Y. Ma, T. Gombosi, J. C. Zhang, and L. M. Kistler ( 2009 ), Multifluid Block‐Adaptive‐Tree Solar wind Roe‐type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418.en_US
dc.identifier.citedreferenceGurnett, D. A., W. S. Kurth, A. Roux, S. J. Bolton, E. A. Thomsen, and J. B. Groene ( 1998 ), Galileo plasma wave observations near Europa, Geophys. Res. Lett., 25, 237 – 240, doi: 10.1029/97GL03706.en_US
dc.identifier.citedreferenceHall, D. T., D. F. Strobel, P. D. Feldman, M. A. McGrath, and H. A. Weaver ( 1995 ), Detection of an oxygen atmosphere on Jupiter's moon Europa, Nature, 373, 677 – 679.en_US
dc.identifier.citedreferenceHall, D. T., P. D. Feldman, M. A. McGrath, and D. F. Strobel ( 1998 ), The far‐ultraviolet oxygen airglow of Europa and Ganymede, Astrophys. J., 499, 475, doi: 10.1086/305604.en_US
dc.identifier.citedreferenceHansen, C. J., D. E. Shemansky, and A. R. Hendrix ( 2005 ), Cassini UVIS observations of Europa's oxygen atmosphere and torus, Icarus, 176, 305 – 315.en_US
dc.identifier.citedreferenceHendrix, A. R., T. A. Cassidy, R. E. Johnson, C. Paranicas, and R. W. Carlson ( 2011 ), Europa's disk‐resolved ultraviolet spectra: Relationships with plasma flux and surface terrains, Icarus, 212, 736 – 743.en_US
dc.identifier.citedreferenceHuebner, W. F., J. J. Keady, and S. P. Lyon ( 1992 ), Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 195, 1 – 289.en_US
dc.identifier.citedreferenceHwang, W., Y.‐K. Kim, and M. E. Rudd ( 1996 ), New model for electron‐impact ionization cross sections of molecules, J. Chem. Phys., 104, 2956 – 2966.en_US
dc.identifier.citedreferenceIp, W.‐H. ( 1996 ), Europa's oxygen exosphere and its magnetospheric interaction, Icarus, 120, 317 – 325.en_US
dc.identifier.citedreferenceIp, W.‐H., D. J. Williams, R. W. McEntire, and B. H. Mauk ( 1998 ), Ion sputtering and surface erosion at Europa, Geophys. Res. Lett., 25, 829 – 832, doi: 10.1029/98GL00472.en_US
dc.identifier.citedreferenceJohnson, R. E. ( 1989 ), Application of laboratory data to the sputtering of a planetary regolith, Icarus, 78, 206 – 210.en_US
dc.identifier.citedreferenceJohnson, R. E. ( 1990 ), Energetic Charged‐Particle Interactions With Atmospheres and Surfaces, 1st ed., Springer, Berlin, doi: 10.1007/978-3-642-48375-2.en_US
dc.identifier.citedreferenceJohnson, R. E., R. M. Killen, J. H. Waite, and W. S. Lewis ( 1998 ), Europa's surface composition and sputter‐produced ionosphere, Geophys. Res. Lett., 25, 3257 – 3260, doi: 10.1029/98GL02565.en_US
dc.identifier.citedreferenceKabin, K., M. R. Combi, T. I. Gombosi, A. F. Nagy, D. L. DeZeeuw, and K. G. Powell ( 1999 ), On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby, J. Geophys. Res., 104, 19,983 – 19,992, doi: 10.1029/1999JA900263.en_US
dc.identifier.citedreferenceKhurana, K. K., M. G. Kivelson, K. P. Hand, and C. T. Russell ( 2009 ), Electromagnetic induction from Europa's ocean and the deep interior, in Europa, The Univ. of Arizona Space Sci. Ser., edited by R. T. Pappalardo, W. B. McKinnon, and K. K. Khurana, pp. 571, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceKhurana, K. K., X. Jia, M. G. Kivelson, F. Nimmo, G. Schubert, and C. T. Russell ( 2011 ), Evidence of a global magma ocean in Io's interior, Science, 332 ( 6034 ), 1186 – 1189, doi: 10.1126/science.1201425.en_US
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, S. Joy, C. T. Russell, D. J. Southwood, R. J. Walker, and C. Polanskey ( 1997 ), Europa's magnetic signature: Report from Galileo's pass on 19 December 1996, Science, 276, 1239 – 1241.en_US
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, D. J. Stevenson, L. Bennett, S. Joy, C. T. Russell, R. J. Walker, C. Zimmer, and C. Polanskey ( 1999 ), Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment, J. Geophys. Res., 104, 4609 – 4626, doi: 10.1029/1998JA900095.en_US
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, and M. Volwerk ( 2009 ), Europa's interaction with the Jovian magnetosphere, in Europa, The Univ. of Arizona Space Sci. Ser., edited by R. T. Pappalardo, W. B. McKinnon, and K. K. Khurana, pp. 545, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceKliore, A. J., D. P. Hinson, F. M. Flasar, A. F. Nagy, and T. E. Cravens ( 1997 ), The ionosphere of Europa from Galileo radio occultations, Science, 277, 355 – 358.en_US
dc.identifier.citedreferenceLane, A. L., R. M. Nelson, and D. L. Matson ( 1981 ), Evidence for sulphur implantation in Europa's UV absorption band, Nature, 292, 38.en_US
dc.identifier.citedreferenceLipatov, A. S., and M. R. Combi ( 2006 ), Effects of kinetic processes in shaping Io's global plasma environment: A 3D hybrid model, Icarus, 180, 412 – 427.en_US
dc.identifier.citedreferenceLipatov, A. S., J. F. Cooper, W. R. Paterson, E. C. Sittler, R. E. Hartle, and D. G. Simpson ( 2010 ), Jovian plasma torus interaction with Europa: 3D hybrid kinetic simulation. First results, Planet. Space Sci., 58, 1681 – 1691.en_US
dc.identifier.citedreferenceLipatov, A. S., J. F. Cooper, W. R. Paterson, E. C. Sittler Jr., R. E. Hartle, and D. G. Simpson ( 2013 ), Jovian plasma torus interaction with Europa. Plasma wake structure and effect of inductive magnetic field: 3D hybrid kinetic simulation, Planet. Space Sci., 77, 12 – 24, doi: 10.1016/j.pss.2013.01.009.en_US
dc.identifier.citedreferenceLiu, Y., A. F. Nagy, K. Kabin, M. R. Combi, D. L. Dezeeuw, T. I. Gombosi, and K. G. Powell ( 2000 ), Two‐species, 3D, MHD simulation of Europa's interaction with Jupiter's magnetosphere, Geophys. Res. Lett., 27, 1791 – 1794, doi: 10.1029/1999GL003734.en_US
dc.identifier.citedreferenceMa, Y.‐J., et al. ( 2007 ), 3D global multi‐species Hall‐MHD simulation of the Cassini T9 flyby, Geophys. Res. Lett., 34, L24S10, doi: 10.1029/2007GL031627.en_US
dc.identifier.citedreferenceMcGrath, M. A., E. Lellouch, D. F. Strobel, P. D. Feldman, and R. E. Johnson ( 2004 ), Satellite atmospheres, in Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 457 – 483, Cambridge Univ., Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G. Tóth, and Y. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272.en_US
dc.identifier.citedreferenceNess, N. F., M. H. Acuna, R. P. Lepping, L. F. Burlaga, K. W. Behannon, and F. M. Neubauer ( 1979 ), Magnetic field studies at Jupiter by Voyager 1—Preliminary results, Science, 204, 982 – 987.en_US
dc.identifier.citedreferenceNeubauer, F. M. ( 1998 ), The sub‐Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res., 103, 19,843 – 19,866, doi: 10.1029/97JE03370.en_US
dc.identifier.citedreferenceNeubauer, F. M. ( 1999 ), Alfvén wings and electromagnetic induction in the interiors: Europa and Callisto, J. Geophys. Res., 104, 28,671 – 28,684, doi: 10.1029/1999JA900217.en_US
dc.identifier.citedreferenceNoll, K. S., H. A. Weaver, and A. M. Gonnella ( 1995 ), The albedo spectrum of Europa from 2200 Å to 3300 Å, J. Geophys. Res., 100, 19,057 – 19,060, doi: 10.1029/94JE03294.en_US
dc.identifier.citedreferenceParanicas, C., A. F. Cheng, and D. J. Williams ( 1998 ), Inference of Europa's conductance from the Galileo Energetic Particles Detector, J. Geophys. Res., 103, 15,001 – 15,008, doi: 10.1029/98JA00961.en_US
dc.identifier.citedreferenceParanicas, C., R. W. Carlson, and R. E. Johnson ( 2001 ), Electron bombardment of Europa, Geophys. Res. Lett., 28, 673 – 676, doi: 10.1029/2000GL012320.en_US
dc.identifier.citedreferenceParanicas, C., J. M. Ratliff, B. H. Mauk, C. Cohen, and R. E. Johnson ( 2002 ), The ion environment near Europa and its role in surface energetics, Geophys. Res. Lett., 29 ( 5 ), 1074, doi: 10.1029/2001GL014127.en_US
dc.identifier.citedreferenceParanicas, C., J. F. Cooper, H. B. Garrett, R. E. Johnson, and S. J. Sturner ( 2009 ), Europa's radiation environment and its effects on the surface, in Europa, The Univ. of Arizona Space Sci. Ser., edited by R. T. Pappalardo, W. B. McKinnon, and K. K. Khurana, pp. 529, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.