Self‐consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere
dc.contributor.author | Rubin, M. | en_US |
dc.contributor.author | Jia, X. | en_US |
dc.contributor.author | Altwegg, K. | en_US |
dc.contributor.author | Combi, M. R. | en_US |
dc.contributor.author | Daldorff, L. K. S. | en_US |
dc.contributor.author | Gombosi, T. I. | en_US |
dc.contributor.author | Khurana, K. | en_US |
dc.contributor.author | Kivelson, M. G. | en_US |
dc.contributor.author | Tenishev, V. M. | en_US |
dc.contributor.author | Tóth, G. | en_US |
dc.contributor.author | Holst, B. | en_US |
dc.contributor.author | Wurz, P. | en_US |
dc.date.accessioned | 2015-07-01T20:55:53Z | |
dc.date.available | 2016-07-05T17:27:58Z | en |
dc.date.issued | 2015-05 | en_US |
dc.identifier.citation | Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K.; Kivelson, M. G.; Tenishev, V. M.; Tóth, G. ; Holst, B.; Wurz, P. (2015). "Selfâ consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere." Journal of Geophysical Research: Space Physics 120(5): 3503-3524. | en_US |
dc.identifier.issn | 2169-9380 | en_US |
dc.identifier.issn | 2169-9402 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/111914 | |
dc.description.abstract | The Jovian moon, Europa, hosts a thin neutral gas atmosphere, which is tightly coupled to Jupiter's magnetosphere. Magnetospheric ions impacting the surface sputter off neutral atoms, which, upon ionization, carry currents that modify the magnetic field around the moon. The magnetic field in the plasma is also affected by Europa's induced magnetic field. In this paper we investigate the environment of Europa using our multifluid MHD model and focus on the effects introduced by both the magnetospheric and the pickup ion populations. The model self‐consistently derives the electron temperature that governs the electron impact ionization process, which is the major source of ionization in this environment. The resulting magnetic field is compared to measurements performed by the Galileo magnetometer, the bulk properties of the modeled thermal plasma population is compared to the Galileo Plasma Subsystem observations, and the modeled surface precipitation fluxes are compared to Galileo Ultraviolet Spectrometer observations. The model shows good agreement with the measured magnetic field and reproduces the basic features of the plasma interaction observed at the moon for both the E4 and the E26 flybys of the Galileo spacecraft. The simulation also produces perturbations asymmetric about the flow direction that account for observed asymmetries.Key PointsFirst multifluid MHD simulation of Europa's plasma interaction presentedMatches plasma and magnetic field observations during Galileo E4 and E26 flybysPlasma flow and temperatures different for magnetospheric and pick up ions | en_US |
dc.publisher | Academic Press | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Jovian magnetosphere | en_US |
dc.subject.other | plasma interaction | en_US |
dc.subject.other | multifluid MHD | en_US |
dc.subject.other | Europa | en_US |
dc.title | Self‐consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/111914/1/jgra51773.pdf | |
dc.identifier.doi | 10.1002/2015JA021149 | en_US |
dc.identifier.source | Journal of Geophysical Research: Space Physics | en_US |
dc.identifier.citedreference | Rusanov, V. V. ( 1961 ), Calculation of interaction of non‐steady shock waves with obstacles, J. Comput. Math. Phys., 1, 267. | en_US |
dc.identifier.citedreference | Paterson, W. R., L. A. Frank, and K. L. Ackerson ( 1999 ), Galileo plasma observations at Europa: Ion energy spectra and moments, J. Geophys. Res., 104, 22,779 – 22,792, doi: 10.1029/1999JA900191. | en_US |
dc.identifier.citedreference | Plainaki, C., A. Milillo, A. Mura, S. Orsini, and T. Cassidy ( 2010 ), Neutral particle release from Europa's surface, Icarus, 210, 385 – 395. | en_US |
dc.identifier.citedreference | Plainaki, C., A. Milillo, A. Mura, S. Orsini, S. Massetti, and T. Cassidy ( 2012 ), The role of sputtering and radiolysis in the generation of Europa exosphere, Icarus, 218, 956 – 966. | en_US |
dc.identifier.citedreference | Pospieszalska, M. K., and R. E. Johnson ( 1989 ), Magnetospheric ion bombardment profiles of satellites—Europa and Dione, Icarus, 78, 1 – 13. | en_US |
dc.identifier.citedreference | Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309. | en_US |
dc.identifier.citedreference | Roth, L., J. Saur, K. D. Retherford, D. F. Strobel, P. D. Feldman, M. A. McGrath, and F. Nimmo ( 2014 ), Transient water vapor at Europa's South Pole, Science, 343 ( 6167 ), 171 – 174. | en_US |
dc.identifier.citedreference | Rubin, M., M. R. Combi, L. K. S. Daldorff, T. I. Gombosi, K. C. Hansen, Y. Shou, V. M. Tenishev, G. Toth, B. van der Holst, and K. Altwegg ( 2014a ), Comet 1P/Halley multifluid MHD model for the Giotto fly‐by, Astrophys. J. Lett., 781 ( 2 ), 86 – 98, doi: 10.1088/0004-637x/781/2/86. | en_US |
dc.identifier.citedreference | Rubin, M., et al. ( 2014b ), Plasma environment of a weak comet—Predictions for Comet 67P/Churyumov–Gerasimenko from multifluid‐MHD and Hybrid models, Icarus, 242, 38 – 49, doi: 10.1016/j.icarus.2014.07.021. | en_US |
dc.identifier.citedreference | Saad, Y., and M. H. Schultz ( 1986 ), GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 ( 3 ), 856 – 869, doi: 10.1137/0907058. | en_US |
dc.identifier.citedreference | Samson, J. A. R., and J. L. Gardner ( 1975 ), On the ionization potential of molecular oxygen, Can. J. Phys., 53 ( 19 ), 1948 – 1952, doi: 10.1139/p75-244. | en_US |
dc.identifier.citedreference | Saur, J., D. F. Strobel, and F. M. Neubauer ( 1998 ), Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere, J. Geophys. Res., 103, 19,947 – 19,962, doi: 10.1029/97JE03556. | en_US |
dc.identifier.citedreference | Saur, J., P. D. Feldman, L. Roth, F. Nimmo, D. F. Strobel, K. D. Retherford, M. A. McGrath, N. Schilling, J.‐C. Gérard, and D. Grodent ( 2011 ), Hubble Space Telescope/Advanced Camera for surveys observations of Europa's atmospheric ultraviolet emission at eastern elongation, Astrophys. J., 738, 153. | en_US |
dc.identifier.citedreference | Schilling, N. ( 2006 ), Time varying interaction of Europa's atmosphere–ionosphere and it's conducting ocean with the Jovian magnetosphere, PhD thesis, Univ. of Cologne. | en_US |
dc.identifier.citedreference | Schilling, N., F. M. Neubauer, and J. Saur ( 2008 ), Influence of the internally induced magnetic field on the plasma interaction of Europa, J. Geophys. Res., 113, A03203, doi: 10.1029/2007JA012842. | en_US |
dc.identifier.citedreference | Schreier, R., A. Eviatar, V. M. Vasyliunas, and J. D. Richardson ( 1993 ), Modeling the Europa plasma torus, J. Geophys. Res., 98, 21,231 – 21,243, doi: 10.1029/93JA02585. | en_US |
dc.identifier.citedreference | Schunk, R., and A. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, Cambridge, U. K. | en_US |
dc.identifier.citedreference | Shematovich, V. I., R. E. Johnson, J. F. Cooper, and M. C. Wong ( 2005 ), Surface‐bounded atmosphere of Europa, Icarus, 173, 480 – 498. | en_US |
dc.identifier.citedreference | Shi, M., R. A. Baragiola, D. E. Grosjean, R. E. Johnson, S. Jurac, and J. Schou ( 1995 ), Sputtering of water ice surfaces and the production of extended neutral atmospheres, J. Geophys. Res., 100 ( E12 ), 26,387 – 26,395, doi: 10.1029/95JE03099. | en_US |
dc.identifier.citedreference | Smyth, W. H., and M. L. Marconi ( 2006 ), Europa's atmosphere, gas tori, and magnetospheric implications, Icarus, 181, 510 – 526. | en_US |
dc.identifier.citedreference | Spencer, J. R., L. K. Tamppari, T. Z. Martin, and L. D. Travis ( 1999 ), Temperatures on Europa from Galileo photopolarimeter‐radiometer: Nighttime thermal anomalies, Science, 284, 1514 – 1516. | en_US |
dc.identifier.citedreference | Tóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126. | en_US |
dc.identifier.citedreference | Tóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006. | en_US |
dc.identifier.citedreference | Truscott, P., D. Heynderickx, A. Sicard‐Piet, and S. Bourdarie ( 2011 ), Simulation of the radiation environment near Europa using the geant4‐based PLANETOCOSMICS‐J model, IEEE Trans. Nucl. Sci., 58, 2776 – 2784. | en_US |
dc.identifier.citedreference | van der Holst, B., et al. ( 2011 ), CRASH: A Block‐adaptive‐mesh Code for Radiative Shock Hydrodynamics—Implementation and verification, Astrophys. J. Supp., 194 ( 2 ), 23. | en_US |
dc.identifier.citedreference | van der Holst, B., I. V. Sokolov, X. Meng, M. Jin, W. B. Manchester, G. Tóth, and T. I. Gombosi ( 2014 ), Alfvén wave solar model (AWSoM): Coronal heating, Astrophys. J. Lett., 782 ( 2 ), 81. | en_US |
dc.identifier.citedreference | Volwerk, M., M. G. Kivelson, and K. K. Khurana ( 2001 ), Wave activity in Europa's wake: Implications for ion pickup, J. Geophys. Res., 106, 26,033 – 26,048, doi: 10.1029/2000JA000347. | en_US |
dc.identifier.citedreference | Volwerk, M., K. Khurana, and M. Kivelson ( 2007 ), Europa's Alfvén wing: Shrinkage and displacement influenced by an induced magnetic field, Ann. Geophys., 25, 905 – 914. | en_US |
dc.identifier.citedreference | Williams, D. J., R. W. McEntire, S. Jaskulek, and B. Wilken ( 1992 ), The Galileo energetic particles detector, Space Sci. Rev., 60, 385 – 412. | en_US |
dc.identifier.citedreference | Wolff, R. S., and D. A. Mendis ( 1983 ), On the nature of the interaction of the Jovian magnetosphere with the icy Galilean satellites, J. Geophys. Res., 88, 4749 – 4769, doi: 10.1029/JA088iA06p04749. | en_US |
dc.identifier.citedreference | Zimmer, C., K. K. Khurana, and M. G. Kivelson ( 2000 ), Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations, Icarus, 147, 329 – 347. | en_US |
dc.identifier.citedreference | Bagenal, F. ( 1994 ), Empirical model of the Io plasma torus: Voyager measurements, J. Geophys. Res., 99, 11,043 – 11,062, doi: 10.1029/93JA02908. | en_US |
dc.identifier.citedreference | Banks, P. M., and G. Kockarts ( 1973 ), Aeronomy Part A, Academic Press, New York/London. | en_US |
dc.identifier.citedreference | Brown, M. E., and R. E. Hill ( 1996 ), Discovery of an extended sodium atmosphere around Europa, Nature, 380, 229 – 231. | en_US |
dc.identifier.citedreference | Cassidy, T., P. Coll, F. Raulin, R. W. Carlson, R. E. Johnson, M. J. Loeffler, K. P. Hand, and R. A. Baragiola ( 2010 ), Radiolysis and photolysis of icy satellite surfaces: Experiments and theory, Space Sci. Rev., 153, 299 – 315. | en_US |
dc.identifier.citedreference | Cassidy, T. A., R. E. Johnson, M. A. McGrath, M. C. Wong, and J. F. Cooper ( 2007 ), The spatial morphology of Europa's near‐surface O 2 atmosphere, Icarus, 191, 755 – 764. | en_US |
dc.identifier.citedreference | Cassidy, T. A., R. E. Johnson, P. E. Geissler, and F. Leblanc ( 2008 ), Simulation of Na D emission near Europa during eclipse, J. Geophys. Res., 113 E02005, doi: 10.1029/2007JE002955. | en_US |
dc.identifier.citedreference | Cassidy, T. A., R. E. Johnson, and O. J. Tucker ( 2009 ), Trace constituents of Europa's atmosphere, Icarus, 201, 182 – 190. | en_US |
dc.identifier.citedreference | Cooper, J. F., R. E. Johnson, B. H. Mauk, H. B. Garrett, and N. Gehrels ( 2001 ), Energetic ion and electron irradiation of the icy galilean satellites, Icarus, 149, 133 – 159. | en_US |
dc.identifier.citedreference | Famá, M., J. Shi, and R. A. Baragiola ( 2008 ), Sputtering of ice by low‐energy ions, Surf. Sci., 602, 156 – 161. | en_US |
dc.identifier.citedreference | Frank, L. A., K. L. Ackerson, J. A. Lee, M. R. English, and G. L. Pickett ( 1992 ), The plasma instrumentation for the Galileo mission, Space Sci. Rev., 60, 283 – 304. | en_US |
dc.identifier.citedreference | Glocer, A., G. Tóth, Y. Ma, T. Gombosi, J. C. Zhang, and L. M. Kistler ( 2009 ), Multifluid Block‐Adaptive‐Tree Solar wind Roe‐type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418. | en_US |
dc.identifier.citedreference | Gurnett, D. A., W. S. Kurth, A. Roux, S. J. Bolton, E. A. Thomsen, and J. B. Groene ( 1998 ), Galileo plasma wave observations near Europa, Geophys. Res. Lett., 25, 237 – 240, doi: 10.1029/97GL03706. | en_US |
dc.identifier.citedreference | Hall, D. T., D. F. Strobel, P. D. Feldman, M. A. McGrath, and H. A. Weaver ( 1995 ), Detection of an oxygen atmosphere on Jupiter's moon Europa, Nature, 373, 677 – 679. | en_US |
dc.identifier.citedreference | Hall, D. T., P. D. Feldman, M. A. McGrath, and D. F. Strobel ( 1998 ), The far‐ultraviolet oxygen airglow of Europa and Ganymede, Astrophys. J., 499, 475, doi: 10.1086/305604. | en_US |
dc.identifier.citedreference | Hansen, C. J., D. E. Shemansky, and A. R. Hendrix ( 2005 ), Cassini UVIS observations of Europa's oxygen atmosphere and torus, Icarus, 176, 305 – 315. | en_US |
dc.identifier.citedreference | Hendrix, A. R., T. A. Cassidy, R. E. Johnson, C. Paranicas, and R. W. Carlson ( 2011 ), Europa's disk‐resolved ultraviolet spectra: Relationships with plasma flux and surface terrains, Icarus, 212, 736 – 743. | en_US |
dc.identifier.citedreference | Huebner, W. F., J. J. Keady, and S. P. Lyon ( 1992 ), Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 195, 1 – 289. | en_US |
dc.identifier.citedreference | Hwang, W., Y.‐K. Kim, and M. E. Rudd ( 1996 ), New model for electron‐impact ionization cross sections of molecules, J. Chem. Phys., 104, 2956 – 2966. | en_US |
dc.identifier.citedreference | Ip, W.‐H. ( 1996 ), Europa's oxygen exosphere and its magnetospheric interaction, Icarus, 120, 317 – 325. | en_US |
dc.identifier.citedreference | Ip, W.‐H., D. J. Williams, R. W. McEntire, and B. H. Mauk ( 1998 ), Ion sputtering and surface erosion at Europa, Geophys. Res. Lett., 25, 829 – 832, doi: 10.1029/98GL00472. | en_US |
dc.identifier.citedreference | Johnson, R. E. ( 1989 ), Application of laboratory data to the sputtering of a planetary regolith, Icarus, 78, 206 – 210. | en_US |
dc.identifier.citedreference | Johnson, R. E. ( 1990 ), Energetic Charged‐Particle Interactions With Atmospheres and Surfaces, 1st ed., Springer, Berlin, doi: 10.1007/978-3-642-48375-2. | en_US |
dc.identifier.citedreference | Johnson, R. E., R. M. Killen, J. H. Waite, and W. S. Lewis ( 1998 ), Europa's surface composition and sputter‐produced ionosphere, Geophys. Res. Lett., 25, 3257 – 3260, doi: 10.1029/98GL02565. | en_US |
dc.identifier.citedreference | Kabin, K., M. R. Combi, T. I. Gombosi, A. F. Nagy, D. L. DeZeeuw, and K. G. Powell ( 1999 ), On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby, J. Geophys. Res., 104, 19,983 – 19,992, doi: 10.1029/1999JA900263. | en_US |
dc.identifier.citedreference | Khurana, K. K., M. G. Kivelson, K. P. Hand, and C. T. Russell ( 2009 ), Electromagnetic induction from Europa's ocean and the deep interior, in Europa, The Univ. of Arizona Space Sci. Ser., edited by R. T. Pappalardo, W. B. McKinnon, and K. K. Khurana, pp. 571, Univ. of Ariz. Press, Tucson, Ariz. | en_US |
dc.identifier.citedreference | Khurana, K. K., X. Jia, M. G. Kivelson, F. Nimmo, G. Schubert, and C. T. Russell ( 2011 ), Evidence of a global magma ocean in Io's interior, Science, 332 ( 6034 ), 1186 – 1189, doi: 10.1126/science.1201425. | en_US |
dc.identifier.citedreference | Kivelson, M. G., K. K. Khurana, S. Joy, C. T. Russell, D. J. Southwood, R. J. Walker, and C. Polanskey ( 1997 ), Europa's magnetic signature: Report from Galileo's pass on 19 December 1996, Science, 276, 1239 – 1241. | en_US |
dc.identifier.citedreference | Kivelson, M. G., K. K. Khurana, D. J. Stevenson, L. Bennett, S. Joy, C. T. Russell, R. J. Walker, C. Zimmer, and C. Polanskey ( 1999 ), Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment, J. Geophys. Res., 104, 4609 – 4626, doi: 10.1029/1998JA900095. | en_US |
dc.identifier.citedreference | Kivelson, M. G., K. K. Khurana, and M. Volwerk ( 2009 ), Europa's interaction with the Jovian magnetosphere, in Europa, The Univ. of Arizona Space Sci. Ser., edited by R. T. Pappalardo, W. B. McKinnon, and K. K. Khurana, pp. 545, Univ. of Ariz. Press, Tucson, Ariz. | en_US |
dc.identifier.citedreference | Kliore, A. J., D. P. Hinson, F. M. Flasar, A. F. Nagy, and T. E. Cravens ( 1997 ), The ionosphere of Europa from Galileo radio occultations, Science, 277, 355 – 358. | en_US |
dc.identifier.citedreference | Lane, A. L., R. M. Nelson, and D. L. Matson ( 1981 ), Evidence for sulphur implantation in Europa's UV absorption band, Nature, 292, 38. | en_US |
dc.identifier.citedreference | Lipatov, A. S., and M. R. Combi ( 2006 ), Effects of kinetic processes in shaping Io's global plasma environment: A 3D hybrid model, Icarus, 180, 412 – 427. | en_US |
dc.identifier.citedreference | Lipatov, A. S., J. F. Cooper, W. R. Paterson, E. C. Sittler, R. E. Hartle, and D. G. Simpson ( 2010 ), Jovian plasma torus interaction with Europa: 3D hybrid kinetic simulation. First results, Planet. Space Sci., 58, 1681 – 1691. | en_US |
dc.identifier.citedreference | Lipatov, A. S., J. F. Cooper, W. R. Paterson, E. C. Sittler Jr., R. E. Hartle, and D. G. Simpson ( 2013 ), Jovian plasma torus interaction with Europa. Plasma wake structure and effect of inductive magnetic field: 3D hybrid kinetic simulation, Planet. Space Sci., 77, 12 – 24, doi: 10.1016/j.pss.2013.01.009. | en_US |
dc.identifier.citedreference | Liu, Y., A. F. Nagy, K. Kabin, M. R. Combi, D. L. Dezeeuw, T. I. Gombosi, and K. G. Powell ( 2000 ), Two‐species, 3D, MHD simulation of Europa's interaction with Jupiter's magnetosphere, Geophys. Res. Lett., 27, 1791 – 1794, doi: 10.1029/1999GL003734. | en_US |
dc.identifier.citedreference | Ma, Y.‐J., et al. ( 2007 ), 3D global multi‐species Hall‐MHD simulation of the Cassini T9 flyby, Geophys. Res. Lett., 34, L24S10, doi: 10.1029/2007GL031627. | en_US |
dc.identifier.citedreference | McGrath, M. A., E. Lellouch, D. F. Strobel, P. D. Feldman, and R. E. Johnson ( 2004 ), Satellite atmospheres, in Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 457 – 483, Cambridge Univ., Press, Cambridge, U. K. | en_US |
dc.identifier.citedreference | Najib, D., A. F. Nagy, G. Tóth, and Y. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272. | en_US |
dc.identifier.citedreference | Ness, N. F., M. H. Acuna, R. P. Lepping, L. F. Burlaga, K. W. Behannon, and F. M. Neubauer ( 1979 ), Magnetic field studies at Jupiter by Voyager 1—Preliminary results, Science, 204, 982 – 987. | en_US |
dc.identifier.citedreference | Neubauer, F. M. ( 1998 ), The sub‐Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res., 103, 19,843 – 19,866, doi: 10.1029/97JE03370. | en_US |
dc.identifier.citedreference | Neubauer, F. M. ( 1999 ), Alfvén wings and electromagnetic induction in the interiors: Europa and Callisto, J. Geophys. Res., 104, 28,671 – 28,684, doi: 10.1029/1999JA900217. | en_US |
dc.identifier.citedreference | Noll, K. S., H. A. Weaver, and A. M. Gonnella ( 1995 ), The albedo spectrum of Europa from 2200 Å to 3300 Å, J. Geophys. Res., 100, 19,057 – 19,060, doi: 10.1029/94JE03294. | en_US |
dc.identifier.citedreference | Paranicas, C., A. F. Cheng, and D. J. Williams ( 1998 ), Inference of Europa's conductance from the Galileo Energetic Particles Detector, J. Geophys. Res., 103, 15,001 – 15,008, doi: 10.1029/98JA00961. | en_US |
dc.identifier.citedreference | Paranicas, C., R. W. Carlson, and R. E. Johnson ( 2001 ), Electron bombardment of Europa, Geophys. Res. Lett., 28, 673 – 676, doi: 10.1029/2000GL012320. | en_US |
dc.identifier.citedreference | Paranicas, C., J. M. Ratliff, B. H. Mauk, C. Cohen, and R. E. Johnson ( 2002 ), The ion environment near Europa and its role in surface energetics, Geophys. Res. Lett., 29 ( 5 ), 1074, doi: 10.1029/2001GL014127. | en_US |
dc.identifier.citedreference | Paranicas, C., J. F. Cooper, H. B. Garrett, R. E. Johnson, and S. J. Sturner ( 2009 ), Europa's radiation environment and its effects on the surface, in Europa, The Univ. of Arizona Space Sci. Ser., edited by R. T. Pappalardo, W. B. McKinnon, and K. K. Khurana, pp. 529, Univ. of Ariz. Press, Tucson, Ariz. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.