Show simple item record

Speciation dynamics during the global radiation of extant bats

dc.contributor.authorShi, Jeff J.en_US
dc.contributor.authorRabosky, Daniel L.en_US
dc.date.accessioned2015-07-01T20:55:56Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationShi, Jeff J.; Rabosky, Daniel L. (2015). "Speciation dynamics during the global radiation of extant bats." Evolution 69(6): 1528-1545.en_US
dc.identifier.issn0014-3820en_US
dc.identifier.issn1558-5646en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111917
dc.publisherJohns Hopkins University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherdiversification ratesen_US
dc.subject.otherBAMMen_US
dc.subject.otherChiropteraen_US
dc.subject.othermacroevolutionen_US
dc.subject.otherphylogenetic imbalanceen_US
dc.titleSpeciation dynamics during the global radiation of extant batsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/1/evo12681-sup-0008-FIGURE7.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/2/evo12681-sup-0003-FIGURE2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/3/evo12681.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/4/evo12681-sup-0002-FIGURE1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/5/evo12681-sup-0009-FIGURE8.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/6/evo12681-sup-0007-FIGURE6.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/7/evo12681-sup-0006-FIGURE5.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/8/evo12681-sup-0004-FIGURE3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111917/9/evo12681-sup-0005-FIGURE4.pdf
dc.identifier.doi10.1111/evo.12681en_US
dc.identifier.sourceEvolutionen_US
dc.identifier.citedreferenceSchluter, D. 2000. The ecology of adaptive radiation. Oxford Univ. Press, Oxford, U.K.en_US
dc.identifier.citedreferenceSmith, S. A., and C. W. Dunn. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24: 715 – 716.en_US
dc.identifier.citedreferenceSmith, S. A., and B. C. O'Meara. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 – 2690.en_US
dc.identifier.citedreferenceSmith, S. A., J. M. Beaulieu, and M. J. Donoghue. 2009. Mega‐phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol. Biol. 9: 37.en_US
dc.identifier.citedreferenceSpringer, M. S., W. J. Murphy, E. Eizirik, and S. J. O'Brien. 2003. Placental mammal diversification and the Cretaceous‐Tertiary boundary. Proc. Natl. Acad. Sci. USA 100: 1056 – 1061.en_US
dc.identifier.citedreferenceStadler, T., D. L. Rabosky, R. E. Ricklefs, and F. Bokma. 2014. On age and species richness of higher taxa. Am. Nat. 184: 447 – 455.en_US
dc.identifier.citedreferenceStamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics 30: 1312 – 1313.en_US
dc.identifier.citedreferenceStanley, S. M. 1979. Macroevolution: pattern and process. W.H. Freeman, San Francisco, CA.en_US
dc.identifier.citedreferenceStrathmann, R. R., and M. Slatkin. 1983. The improbability of animal phyla with few species. Paleobiology 9: 97 – 106.en_US
dc.identifier.citedreferenceTalavera, G., and J. Castresana. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564 – 577.en_US
dc.identifier.citedreferenceTeeling, E. C., O. Madsen, R. A. Van Den Bussche, W. W. de Jong, M. J. Stanhope, and M. S. Springer. 2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc. Natl. Acad. Sci. USA 99: 1431 – 1436.en_US
dc.identifier.citedreferenceTeeling, E. C., O. Madsen, W. J. Murphy, M. S. Springer, and S. J. O'Brien. 2003. Nuclear gene sequences confirm an ancient link between New Zealand's short‐tailed bat and South American noctilionoid bats. Mol. Phylogenet. Evol. 28: 308 – 319.en_US
dc.identifier.citedreferenceTeeling, E. C., M. S. Springer, O. Madsen, P. J. J. Bates, S. J. O'Brien, and W. J. Murphy. 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580 – 584.en_US
dc.identifier.citedreferenceTeeling, E. C., S. Dool, and M. S. Springer. 2012. Phylogenies, fossils, and functional genes: the evolution of echolocation in bats. Pp. 1 – 22 in G. F. Gunnell and N. B. Simmons, eds. Evolutionary history of bats: fossils, molecules, and morphology. Cambridge Univ. Press, Cambridge, U.K.en_US
dc.identifier.citedreferenceVan Valen, L. 1979. The evolution of bats. Evol. Theory 4: 103 – 121.en_US
dc.identifier.citedreferenceVrba, E. S. 1992. Mammals as a key to evolutionary theory. J. Mammal. 73: 1 – 28.en_US
dc.identifier.citedreferenceWeir, J. T., and T. D. Price. 2011. Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. Am. Nat. 177: 462 – 469.en_US
dc.identifier.citedreferenceWiens, J. J. 2011. The causes of species richness patterns across space, time, and clades and the role of “ecological limits.” Q. Rev. Biol. 86: 75 – 96.en_US
dc.identifier.citedreferenceYoder, J. B., E. Clancey, S. Des Roches, J. M. Eastman, L. Gentry, W. Godsoe, T. J. Hagey, D. Jochimsen, B. P. Oswald, J. Robertson, et al. 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23: 1581 – 1596.en_US
dc.identifier.citedreferenceYu, W., Y. Wu, and G. Yang. 2014. Early diversification trend and Asian origin for extent bat lineages. J. Evol. Biol. 27: 2204 – 2218.en_US
dc.identifier.citedreferenceZanne, A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, B. C. O'Meara, A. T. Moles, P. B. Reich, et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89 – 92.en_US
dc.identifier.citedreferenceAberer, A. J., D. Krompass, and A. Stamatakis. 2013. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol. 62: 162 – 166.en_US
dc.identifier.citedreferenceAgnarsson, I., C. M. Zambrana‐Torrelio, N. P. Flores‐Saldana, and L. J. May‐Collado. 2011. A time‐calibrated species‐level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr. 3. doi: 10.1371/currents.RRN1212.en_US
dc.identifier.citedreferenceAlfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA 106: 13410 – 13414.en_US
dc.identifier.citedreferenceAlmeida, F. C., N. P. Giannini, R. DeSalle, and N. B. Simmons. 2011. Evolutionary relationships of the old world fruit bats (Chiroptera, Pteropodidae): another star phylogeny? BMC Evol. Biol. 11: 281.en_US
dc.identifier.citedreferenceAltekar, G., S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist. 2004. Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20: 407 – 415.en_US
dc.identifier.citedreferenceBadgley, C., and J. A. Finarelli. 2013. Diversity dynamics of mammals in relation to tectonic and climatic history: comparison of three Neogene records from North America. Paleobiology 39: 373 – 399.en_US
dc.identifier.citedreferenceBarker, F. K., K. J. Burns, J. Klicka, S. M. Lanyon, and I. J. Lovette. 2013. Going to extremes: contrasting rates of diversification in a recent radiation of new world passerine birds. Syst. Biol. 62: 298 – 320.en_US
dc.identifier.citedreferenceBarnosky, A. D. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21: 172 – 185.en_US
dc.identifier.citedreferenceBarraclough, T. G., and S. Nee. 2001. Phylogenetics and speciation. Trends Ecol. Evol. 16: 391 – 399.en_US
dc.identifier.citedreferenceBenton, M. J. 1987. Progress and competition in macroevolution. Biol. Rev. 62: 305 – 338.en_US
dc.identifier.citedreferenceBenton, M. J. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323: 728 – 732.en_US
dc.identifier.citedreferenceBininda‐Emonds, O. R. P., M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. 2007. The delayed rise of present‐day mammals. Nature 446: 507 – 512.en_US
dc.identifier.citedreferenceCastresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540 – 552.en_US
dc.identifier.citedreferenceChan, K. M. A., and B. R. Moore. 2002. Whole‐tree methods for detecting differential diversification rates. Syst. Biol. 51: 855 – 865.en_US
dc.identifier.citedreferenceCornell, H. V. 2013. Is regional species diversity bounded or unbounded? Biol. Rev. 88: 140 – 165.en_US
dc.identifier.citedreferenceDávalos, L. M., A. L. Cirranello, J. H. Geisler, and N. B. Simmons. 2012. Understanding phylogenetic incongruence: lessons from phyllostomid bats. Biol. Rev. 87: 991 – 1024.en_US
dc.identifier.citedreferenceDumont, E. R., L. M. Dávalos, A. Goldberg, S. E. Santana, K. Rex, and C. C. Voigt. 2012. Morphological innovation, diversification and invasion of a new adaptive zone. Proc. R. Soc. B Biol. Sci. 279: 1797 – 1805.en_US
dc.identifier.citedreferenceDumont, E. R., K. Samadevam, I. Grosse, O. M. Warsi, B. Baird, and L. M. Dávalos. 2014. Selection for mechanical advantage underlies multiple cranial optima in New World leaf‐nosed bats. Evolution 68: 1436 – 1449.en_US
dc.identifier.citedreferenceEiting, T. P., and G. F. Gunnell. 2009. Global completeness of the bat fossil record. J. Mamm. Evol. 16: 151 – 173.en_US
dc.identifier.citedreferenceErwin, D. H., J. W. Valentine, and J. J. Sepkoski, Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41: 1177 – 1186.en_US
dc.identifier.citedreferenceEtienne, R. S., and B. Haegeman. 2012. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. Am. Nat. 180: E75 – E89.en_US
dc.identifier.citedreferenceFarrell, B. D. 1998. “ Inordinate fondness” explained: why are there so many beetles? Science 281: 555 – 559.en_US
dc.identifier.citedreferenceFenton, M. B. 2010. Convergences in the diversification of bats. Curr. Zool. 56: 454 – 468.en_US
dc.identifier.citedreferenceFitzJohn, R. G., W. P. Maddison, and S. P. Otto. 2009. Estimating trait‐dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58: 595 – 611.en_US
dc.identifier.citedreferenceFoote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19: 403 – 419.en_US
dc.identifier.citedreferenceFunk, D. J., and K. E. Omland. 2003. Species‐level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34: 397 – 423.en_US
dc.identifier.citedreferenceGlor, R. E. 2010. Phylogenetic insights on adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 41: 251 – 270.en_US
dc.identifier.citedreferenceGould, S. J., D. M. Raup, and J. J. Sepkoski, Jr. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3: 23 – 40.en_US
dc.identifier.citedreferenceGould, S. J., N. L. Gilinsky, and R. Z. German. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236: 1437 – 1441.en_US
dc.identifier.citedreferenceHarmon, L. J. 2012. An inordinate fondness for eukaryotic diversity. PLoS Biol. 10: e1001382.en_US
dc.identifier.citedreferenceHarmon, L. J., J. T. Weir, C. D. Brock, R. E. Glor, and W. Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24: 129 – 131.en_US
dc.identifier.citedreferenceHarrison, N., and C. A. Kidner. 2011. Next‐generation sequencing and systematics: what can a billion base pairs of DNA sequence data do for you? Taxon 60: 1552 – 1566.en_US
dc.identifier.citedreferenceHeath, T. A., D. J. Zwickl, J. Kim, and D. M. Hillis. 2008. Taxon sampling affects inferences of macroevolutionary processes from phylogenetic trees. Syst. Biol. 57: 160 – 166.en_US
dc.identifier.citedreferenceHinchliff, C. E., and E. H. Roalson. 2013. Using supermatrices for phylogenetic inquiry: an example using the sedges. Syst. Biol. 62: 205 – 219.en_US
dc.identifier.citedreferenceJones, K. E., A. Purvis, A. MacLarnon, O. R. P. Bininda‐Emonds, and N. B. Simmons. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol. Rev. 77: 223 – 259.en_US
dc.identifier.citedreferenceJones, K. E., O. R. P. Bininda‐Emonds, and J. L. Gittleman. 2005. Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59: 2243 – 2255.en_US
dc.identifier.citedreferenceKass, R. E., and A. E. Raftery. 1995. Bayes factors. J. Am. Stat. Assoc. 90: 773 – 795.en_US
dc.identifier.citedreferenceKirkpatrick, M., and M. Slatkin. 1993. Searching for evolutionary patterns in the shape of a phylogenetic tree. Evolution 47: 1171 – 1181.en_US
dc.identifier.citedreferenceKisel, Y., L. McInnes, N. H. Toomey, and C. D. L. Orme. 2011. How diversification rates and diversity limits combine to create large‐scale species‐area relationships. Philos. Trans. R. Soc. B Biol. Sci. 366: 2514 – 2525.en_US
dc.identifier.citedreferenceKnowles, L. L. 2009. Estimating species trees: methods of phylogenetic analysis when there is incongruence across genes. Syst. Biol. 58: 463 – 467.en_US
dc.identifier.citedreferenceLack, J. B., and R. A. Van Den Bussche. 2010. Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. J. Mammal. 91: 1435 – 1448.en_US
dc.identifier.citedreferenceLamb, J. M., T. M. C. Ralph, T. Naidoo, P. J. Taylor, F. Ratrimomanarivo, W. T. Stanley, and S. M. Goodman. 2011. Toward a molecular phylogeny for the Molossidae (Chiroptera) of the Afro‐Malagasy region. Acta Chiropterol. 13: 1 – 16.en_US
dc.identifier.citedreferenceMagallón, S., and M. J. Sanderson. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762 – 1780.en_US
dc.identifier.citedreferenceMartins, E. P., and T. F. Hansen. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149: 646 – 667.en_US
dc.identifier.citedreferenceMcPeek, M. A., and J. M. Brown. 2007. Clade age and not diversification rate explains species richness among animal taxa. Am. Nat. 169: E97 – E106.en_US
dc.identifier.citedreferenceMeredith, R. W., J. E. Janečka, J. Gatesy, O. A. Ryder, C. A. Fisher, E. C. Teeling, A. Goodbla, E. Eizirik, T. L. L. Simão, T. Stadler, et al. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334: 521 – 524.en_US
dc.identifier.citedreferenceMiller‐Butterworth, C. M., W. J. Murphy, S. J. O'Brien, D. S. Jacobs, M. S. Springer, and E. C. Teeling. 2007. A family matter: conclusive resolution of the taxonomic position of the long‐fingered bats, Miniopterus. Mol. Biol. Evol. 24: 1553 – 1561.en_US
dc.identifier.citedreferenceMoen, D., and H. Morlon. 2014. Why does diversification slow down? Trends Ecol. Evol. 29: 190 – 197.en_US
dc.identifier.citedreferenceMonteiro, L. R., and M. R. Nogueira. 2011. Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evol. Biol. 11: 137.en_US
dc.identifier.citedreferenceNee, S., A. O. Mooers, and P. H. Harvey. 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proc. Natl. Acad. Sci. USA 89: 8322 – 8326.en_US
dc.identifier.citedreferenceNee, S., E. C. Holmes, R. M. May, and P. H. Harvey. 1994. Extinction rates can be estimated from molecular phylogenies. Philos. Trans. R. Soc. B Biol. Sci. 344: 77 – 82.en_US
dc.identifier.citedreferenceNowak, M. D. 1994. Walker's bats of the world. Johns Hopkins University Press, Baltimore.en_US
dc.identifier.citedreferencePlatt II, R. N., M. W. Vandewege, C. Kern, C. J. Schmidt, F. G. Hoffmann, and D. A. Ray. 2014. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol. Biol. Evol. 31: 1536 – 1545.en_US
dc.identifier.citedreferencePurvis, A., and P. M. Agapow. 2002. Phylogeny imbalance: taxonomic level matters. Syst. Biol. 51: 844 – 854.en_US
dc.identifier.citedreferencePybus, O. G., and P. H. Harvey. 2000. Testing macro‐evolutionary models using incomplete molecular phylogenies. Proc. R. Soc. B Biol. Sci. 267: 2267 – 2272.en_US
dc.identifier.citedreferenceRabosky, D. L. 2009a. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12: 735 – 743.en_US
dc.identifier.citedreferenceRabosky, D. L. 2009b. Ecological limits on clade diversification in higher taxa. Am. Nat. 173: 662 – 674.en_US
dc.identifier.citedreferenceRabosky, D. L. 2010. Extinction rates should not be estimated from molecular phylogenies. Evolution 64: 1816 – 1824.en_US
dc.identifier.citedreferenceRabosky, D. L. 2013. Diversity‐dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44: 481 – 502.en_US
dc.identifier.citedreferenceRabosky, D. L. 2014. Automatic detection of key innovations, rate shifts, and diversity‐dependence on phylogenetic trees. PLoS One 9: e89543.en_US
dc.identifier.citedreferenceRabosky, D. L., and I. J. Lovette. 2008. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62: 1866 – 1875.en_US
dc.identifier.citedreferenceRabosky, D. L., F. Santini, J. Eastman, S. A. Smith, B. Sidlauskas, J. Chang, and M. E. Alfaro. 2013. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4: 1958.en_US
dc.identifier.citedreferenceRabosky, D. L., S. C. Donellan, M. C. Grundler, and I. J. Lovette. 2014a. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst. Biol. 63: 610 – 627.en_US
dc.identifier.citedreferenceRabosky, D. L., M. C. Grundler, C. J. R. Anderson, P. O. Title, J. J. Shi, J. W. Brown, H. Huang, and J. G. Larson. 2014b. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5: 701 – 707.en_US
dc.identifier.citedreferenceRaia, P., F. Carotenuto, F. Passaro, P. Piras, D. Fulgione, L. Werdelin, J. Saarinen, and M. Fortelius. 2012. Rapid action in the Palaeogene, the relationship between phenotypic and taxonomic diversification in Coenozoic mammals. Proc. R. Soc. B Biol. Sci. 280: 20122244.en_US
dc.identifier.citedreferenceRaup, D. M., S. J. Gould, T. J. M. Schopf, and D. S. Simberloff. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81: 525 – 542.en_US
dc.identifier.citedreferenceRevell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3: 217 – 223.en_US
dc.identifier.citedreferenceRojas, D., Á. Vale, V. Ferrero, and L. Navarro. 2012. The role of frugivory in the diversification of bats in the Neotropics. J. Biogeogr. 39: 1948 – 1960.en_US
dc.identifier.citedreferenceRosenzweig, M. L., and R. D. McCord. 1991. Incumbent replacement: evidence for long‐term evolutionary progress. Paleobiology 17: 202 – 213.en_US
dc.identifier.citedreferenceSahney, S., M. J. Benton, and P. A. Ferry. 2010. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 6: 544 – 547.en_US
dc.identifier.citedreferenceSalichos, L., and A. Rokas. 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497: 327 – 331.en_US
dc.identifier.citedreferenceSanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19: 101 – 109.en_US
dc.identifier.citedreferenceSanderson, M. J., D. Boss, D. Chen, K. A. Cranston, and A. Wehe. 2008. The PhyLoTA browser: processing GenBank for molecular phylogenetics research. Syst. Biol. 57: 335 – 346.en_US
dc.identifier.citedreferenceSantana, S. E., I. R. Grosse, and E. R. Dumont. 2012. Dietary hardness, loading behavior, and the evolution of skull form in bats. Evolution 66: 2587 – 2598.en_US
dc.identifier.citedreferenceSimmons, N. B. 2005a. An Eocene big bang for bats. Science 307: 527 – 528.en_US
dc.identifier.citedreferenceSimmons, N. B. 2005b. Order Chiroptera. Pp. 312 – 529 in D. E. Wilson and D. M. Reeder, eds. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins Univ. Press, Baltimore, MD.en_US
dc.identifier.citedreferenceSimmons, N. B., and T. M. Conway. 2003. Evolution of ecological diversity in bats. Pp. 493 – 535 in T. H. Kunz and M. B. Fenton, eds. Bat ecology. Univ. of Chicago Press, Chicago, IL.en_US
dc.identifier.citedreferenceSimmons, N. B., K. L. Seymour, J. Habersetzer, and G. F. Gunnell. 2008. Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451: 818 – 821.en_US
dc.identifier.citedreferenceSimpson, G. G. 1953. The major features of evolution. Columbia City Press, New York.en_US
dc.identifier.citedreferenceSlater, G. J., L. J. Harmon, D. Wegmann, P. Joyce, L. J. Revell, and M. E. Alfaro. 2012. Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate Bayesian computation. Evolution 66: 752 – 762.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.