Show simple item record

Monocot fossils suitable for molecular dating analyses

dc.contributor.authorIles, William J. D.en_US
dc.contributor.authorSmith, Selena Y.en_US
dc.contributor.authorGandolfo, Maria A.en_US
dc.contributor.authorGraham, Sean W.en_US
dc.date.accessioned2015-07-01T20:55:58Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationIles, William J. D.; Smith, Selena Y.; Gandolfo, Maria A.; Graham, Sean W. (2015). "Monocot fossils suitable for molecular dating analyses." Botanical Journal of the Linnean Society (3): 346-374.en_US
dc.identifier.issn0024-4074en_US
dc.identifier.issn1095-8339en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111920
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherZingiberalesen_US
dc.subject.otherPoalesen_US
dc.subject.otherAlismatalesen_US
dc.subject.otherArecalesen_US
dc.subject.otherAsparagalesen_US
dc.subject.othercalibration fossilen_US
dc.subject.otherDioscorealesen_US
dc.subject.otherLilialesen_US
dc.subject.otherMonocotyledonaeen_US
dc.subject.otherPandanalesen_US
dc.titleMonocot fossils suitable for molecular dating analysesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111920/1/boj12233.pdf
dc.identifier.doi10.1111/boj.12233en_US
dc.identifier.sourceBotanical Journal of the Linnean Societyen_US
dc.identifier.citedreferencePocknall DT, Mildenhall DC. 1984. Late Oligocene‐early Miocene spores and pollen from Southland, New Zealand. New Zealand Geological Survey Paleontological Bulletin 51: 5 – 58.en_US
dc.identifier.citedreferenceStover LE, Partridge AD. 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proceedings of the Royal Society of Victoria 285: 237 – 286.en_US
dc.identifier.citedreferenceStrömberg CAE. 2004. Using phytolith assemblages to reconstruct the origin and spread of grass‐dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 239 – 275.en_US
dc.identifier.citedreferenceStrömberg CAE. 2005. Decoupled taxonomic radiation and ecological expansion of open‐habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences of the United States of America 102: 11980 – 11984.en_US
dc.identifier.citedreferenceStrömberg CAE. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences 39: 517 – 544.en_US
dc.identifier.citedreferenceStrömberg CAE, Dunn RE, Madden RH, Kohn MJ, Carlini AA. 2013. Decoupling the spread of grasslands from the evolution of grazer‐type herbivores in South America. Nature Communications 4: 1478.en_US
dc.identifier.citedreferenceStrömberg CAE, Werdelin L, Friis EM, Saraç G. 2007. The spread of grass‐dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeography, Palaeoclimatology, Palaeoecology 250: 18 – 49.en_US
dc.identifier.citedreferenceSutherland FL, Stubbs D, Green DC. 1977. K–Ar ages of Cainozoic volcanic suites, Bowen‐St Lawrence Hinterland, North Queensland (with some implications for petrologic models). Journal of the Geological Society of Australia 24: 447 – 460.en_US
dc.identifier.citedreferenceSweet AR. 1985. The Cretaceous–Tertiary boundary in the central Alberta Foothills. II: miospore and pollen taxonomy. Canadian Journal of Earth Sciences 23: 1375 – 1388.en_US
dc.identifier.citedreferenceThiers B. Continuously updated. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. Available at: http://sweetgum.nybg.org/ih/en_US
dc.identifier.citedreferenceTidwell WD, Parker LR. 1990. Protoyucca shadishii gen. et sp. nov., an arborescent monocotyledon with secondary growth from the middle Miocene of northwestern Nevada, U.S.A. Review of Palaeobotany and Palynology 62: 79 – 95.en_US
dc.identifier.citedreferenceTiffney BH. 1994. Re‐evaluation of the age of the Brandon Lignite (Vermont, USA) based on plant megafossils. Review of Palaeobotany and Palynology 82: 299 – 315.en_US
dc.identifier.citedreferenceTraverse A. 1994. Palynofloral geochronology of the Brandon Lignite of Vermont, USA. Review of Palaeobotany and Palynology 82: 265 – 297.en_US
dc.identifier.citedreferenceTripathi RP, Mishra SN, Sharma BD. 1999. Cocos nucifera like petrified fruit from the Tertiary of Markantak, M. P., India. Palaeobotanist 48: 251 – 255.en_US
dc.identifier.citedreferenceTruswell EM. 1997. Palynomorph assemblages from marine Eocene sediments on the west Tasmanian continental margin and the South Tasman Rise. Australian Journal of Earth Sciences 44: 633 – 654.en_US
dc.identifier.citedreferenceVicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA. 2008. The age of the grasses and clusters of origins of C 4 photosynthesis. Global Change Biology 14: 2963 – 2977.en_US
dc.identifier.citedreferenceWalker JW, Walker AG. 1984. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Annals of the Missouri Botanical Garden 71: 464 – 521.en_US
dc.identifier.citedreferenceWalther H. 1974. Ergänzung zur Flora von Seifhennersdorf/Sachsen. II. Teil. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 21: 143 – 185.en_US
dc.identifier.citedreferenceWalther H, Kvaček Z. 2007. Early Oligocene Flora of Seifhennersdorf (Saxony). Acta Musei Nationalis Pragae: Series B – Historia Naturalis 63: 85 – 174.en_US
dc.identifier.citedreferenceWhistler DP, Tedford RH, Takeuchi GT, Wang X, Tseng ZJ, Perkins ME. 2009. Revised Miocene biostratigraphy and biochronology of the Dove Spring Formation, Mojave Desert, California. In: Albright LB, ed. Papers on geology, vertebrate paleontology, and biostratigraphy in honor of Michael O. Woodburne. Flagstaff, AZ, Museum of Northern Arizona Bulletin 65, 331 – 362.en_US
dc.identifier.citedreferenceWilde V, Kvaček Z, Bogner J. 2005. Fossil leaves of the Araceae from the European Eocene and notes on other aroid fossils. International Journal of Plant Sciences 166: 157 – 183.en_US
dc.identifier.citedreferenceWilkin P, Schols P, Chase MW, Chayamarit K, Furness CA, Huysmans S, Rakotonasolo F, Smets E, Thapyai C. 2005. A plastid gene phylogeny of the yam genus, Dioscorea: roots, fruits and Madagascar. Systematic Botany 30: 736 – 749.en_US
dc.identifier.citedreferenceWilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S. 2011. Dating primate divergences through an integrated analysis of palaeontological and molecular data. Systematic Biology 60: 16 – 31.en_US
dc.identifier.citedreferenceYang Z, Rannala B. 2006. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution 23: 212 – 226.en_US
dc.identifier.citedreferenceZanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O'Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89 – 92.en_US
dc.identifier.citedreferenceZetter R, Hesse M, Frosch‐Radivo A. 2001. Early Eocene zona‐aperturate pollen grains of the Proxapertites type with affinity to Araceae. Review of Palaeobotany and Palynology 117: 267 – 279.en_US
dc.identifier.citedreferenceZhao LC, Collinson ME, Li CS. 2004. Fruits and seeds of Ruppia (Potamogetonaceae) from the Pliocene of Yushe Basin, Shanxi, northern China and their ecological implications. Botanical Journal of the Linnean Society 145: 317 – 329.en_US
dc.identifier.citedreferenceZucol AF, Brea M, Bellosi ES. 2010. Phytolith studies in Gran Barranca (central Patagonia, Argentina): the middle‐late Eocene. In: Madden RH, Carlini AA, Vucetich MG, Kay RF, eds. The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge: Cambridge University Press, 317 – 340.en_US
dc.identifier.citedreferenceAdams PB. 2011. Systematics of Dendrobiinae (Orchidaceae), with special reference to Australian taxa. Botanical Journal of the Linnean Society 166: 105 – 126.en_US
dc.identifier.citedreferenceAlley NF, Krieg GW, Callen RA. 1996. Early Tertiary Eyre Formation, lower Nelly Creek, southern Lake Eyre Basin, Australia: palynological dating of macrofloras and silcrete, and palaeoclimatic interpretations. Australian Journal of Earth Sciences 43: 71 – 84.en_US
dc.identifier.citedreferenceAPG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105 – 121.en_US
dc.identifier.citedreferenceBaker WJ, Savolainen V, Asmussen‐Lange CB, Chase MW, Dransfield J, Forest F, Harley MM, Uhl NW, Wilkinson M. 2009. Complete generic‐level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Systematic Biology 58: 240 – 256.en_US
dc.identifier.citedreferenceBalslev H. 1998. Juncaceae. In: Kubitzki K, ed. The families and genera of vascular plants. IV. Flowering plants. Monocotyledons: Alismatanae and Commelinanae (except Gramineae). Berlin: Springer, 252 – 260.en_US
dc.identifier.citedreferenceBell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re‐revisited. American Journal of Botany 97: 1296 – 1303.en_US
dc.identifier.citedreferenceBellon H, Bůžek Č, Gaudant J, Kvaček Z, Walther H. 1998. The České Středohoří magmatic complex in Northern Bohemia 40 K– 40 Ar ages for volcanism and biostratigraphy of the Cenozoic freshwater formations. Newsletters on Stratigraphy 36: 77 – 103.en_US
dc.identifier.citedreferenceBenzecry A, Brack‐Hanes SD. 2008. A new hydrocharitacean seagrass from the Eocene of Florida. Botanical Journal of the Linnean Society 157: 19 – 30.en_US
dc.identifier.citedreferencevan den Berg C, Goldman DH, Freudenstein JV, Pridgeon AM, Cameron KM, Chase MW. 2005. An overview of the phylogenetic relationships within Epidendroideae inferred from multiple DNA regions and recircumscription of Epidendreae and Arethuseae (Orchidaceae). American Journal of Botany 92: 613 – 624.en_US
dc.identifier.citedreferenceBerry EW. 1905. A palm from the mid‐Cretaceous. Torreya 5: 30 – 33.en_US
dc.identifier.citedreferenceBerry EW. 1911. Contributions to the Mesozoic flora of the Atlantic coastal plain – VII. Bulletin of the Torrey Botanical Club 38: 399 – 424.en_US
dc.identifier.citedreferenceBerry EW. 1914. The Upper Cretaceous and Eocene floras of South Carolina and Georgia. Washington, DC: United States Geological Survey.en_US
dc.identifier.citedreferenceBirch JL, Keeley SC, Morden CW. 2012. Molecular phylogeny and dating of Asteliaceae (Asparagales): Astelia s.l. evolution provides insight into the Oligocene history of New Zealand. Molecular Phylogenetics and Evolution 65: 102 – 115.en_US
dc.identifier.citedreferenceBogner J. 2009. The free‐floating aroids (Araceae) – living and fossil. Zitteliana 48/49: 113 – 128.en_US
dc.identifier.citedreferenceBogner J, Hoffman GL, Aulenback KR. 2005. A fossilized aroid infructescence, Albertarum pueri gen. nov. et sp. nov., of Late Cretaceous (Late Campanian) age from the Horseshoe Canyon Formation of southern Alberta, Canada. Canadian Journal of Botany 83: 591 – 598.en_US
dc.identifier.citedreferenceBogner J, Johnson KR, Upchurch GR. 2007. New fossil leaves of Araceae from the Late Cretaceous and Paleogene of western North America. Zitteliana 47: 133 – 147.en_US
dc.identifier.citedreferenceBone DA. 1986. The stratigraphy of the Reading Beds (Palaeocene), at Felpham, West Sussex. Tertiary Research 8: 17 – 32.en_US
dc.identifier.citedreferenceBouchenak‐Khelladi Y, Salamin N, Savolainen V, Forest F, Van Der Bank M, Chase MW, Hodkinson TR. 2008. Large multi‐gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Molecular Phylogenetics and Evolution 47: 488 – 505.en_US
dc.identifier.citedreferenceBouchenak‐Khelladi Y, Slingsby JA, Verboom GA, Bond WJ. 2014. Diversification of C 4 grasses (Poaceae) does not coincide with their ecological dominance. American Journal of Botany 101: 300 – 307.en_US
dc.identifier.citedreferenceBremer K. 2000. Early Cretaceous lineages of monocot flowering plants. Proceedings of the National Academy of Sciences of the United States of America 97: 4707 – 4711.en_US
dc.identifier.citedreferenceBriggs BG, Linder HP. 2009. A new subfamilial and tribal classification of Restionaceae (Poales). Telopea 12: 333 – 345.en_US
dc.identifier.citedreferenceBriggs BG, Marchant AD, Perkins AJ. 2010. Phylogeny and features of Restionaceae, Centrolepidaceae and Anarthriaceae (restiid clade of Poales). In: Seberg O, Petersen G, Barfod AS, Davis JI, eds. Diversity, phylogeny and evolution in the monocotyledons. Aarhus: Aarhus University Press, 357 – 388.en_US
dc.identifier.citedreferenceBriggs BG, Marchant AD, Perkins AJ. 2014. Phylogeny of the restiid clade (Poales) and implications for the classification of Anarthriaceae, Centrolepidaceae and Australian Restionaceae. Taxon 63: 24 – 46.en_US
dc.identifier.citedreferenceBuchheim HP, Cushman RA, Biaggi RE. 2011. Stratigraphic revision of the Green River Formation in Fossil Basin, Wyoming: overfilled to underfilled lake evolution. Rocky Mountain Geology 46: 165 – 181.en_US
dc.identifier.citedreferenceCallmander MW, Lowry PP, Forest F, Devey DS, Beentje H, Buerki S. 2012. Benstonea Callm. & Buerki (Pandanaceae): characterization, circumscription, and distribution of a new genus of screw‐pines, with a synopsis of accepted species. Candollea 67: 323 – 345.en_US
dc.identifier.citedreferenceCameron KM. 2004. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Molecular Phylogenetics and Evolution 31: 1157 – 1180.en_US
dc.identifier.citedreferenceCarpenter RJ, Jordan GJ, Hill RS. 2007. A toothed Lauraceae leaf from the Early Eocene of Tasmania. International Journal of Plant Sciences 168: 1191 – 1198.en_US
dc.identifier.citedreferenceCevallos‐Ferriz S, Stockey RA. 1988. Permineralized fruits and seeds from the Princeton Chert (Middle Eocene) of British Columbia: Araceae. American Journal of Botany 75: 1099 – 1113.en_US
dc.identifier.citedreferenceChmura CA. 1973. Upper Cretaceous (Campanian–Maastrichtian) angiosperm pollen from the western San Joaquin Valley, California, USA. Palaeontographica Abteilung B: Paläophytologie 141: 89 – 171.en_US
dc.identifier.citedreferenceChristin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical enablers and the evolution of C 4 photosynthesis in grasses. Proceedings of the National Academy of Sciences of the United States of America 110: 1381 – 1386.en_US
dc.identifier.citedreferenceChristopher RA. 1979. Normapolles and triporate pollen assemblages from the Raritan and Magothy Formations (Upper Cretaceous) of New Jersey. Palynology 3: 73 – 121.en_US
dc.identifier.citedreferenceClarke JT, Warnock RCM, Donoghue PCJ. 2011. Establishing a time‐scale for plant evolution. New Phytologist 192: 266 – 301.en_US
dc.identifier.citedreferenceClyde WC, Wilf P, Iglesias A, Slingerland RL, Barnum T, Bijl PK, Bralower TJ, Brinkhuis H, Comer EE, Huber BT, Ibañez‐Majia M, Jicha BR, Krause JM, Schueth JD, Singer BS, Raigemborn MS, Schmitz MD, Sluijs A, del Carmen Zamaloa M. 2014. New age constraints for the Salamanca Formation and lower Rio Chico Group in western San Jorge Basin, Patagonia, Argentina: implications for K/Pg extinction recovery and land mammal age correlations. Geological Society of America Bulletin 126: 289 – 306.en_US
dc.identifier.citedreferenceCohen KM, Finney S, Gibbard PL. 2013. International Chronostratigraphic Chart v 2013/01. International Commission on Stratigraphy. Available at: http://www.stratigraphy.orgen_US
dc.identifier.citedreferenceCoiffard C, Mohr BAR, Bernardes‐de‐Oliveira MEC. 2013. The Early Cretaceous aroid, Spixiarum kipea gen. et sp. nov., and implications on early dispersal and ecology of basal monocots. Taxon 62: 997 – 1008.en_US
dc.identifier.citedreferenceCollinson ME. 1982. A reassessment of fossil Potamogetonaceae fruit with description of new material from Saudi Arabia. Tertiary Research 4: 83 – 104.en_US
dc.identifier.citedreferenceCollinson ME. 1983. Palaeofloristic assemblages and palaeoecology of the Lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Botanical Journal of the Linnean Society 86: 177 – 225.en_US
dc.identifier.citedreferenceCollinson ME. 2000. Fruit and seed floras from the Palaeocene/Eocene transition and subsequent Eocene in southern England: comparison and palaeoenvironmental implications. GFF 122: 36 – 37.en_US
dc.identifier.citedreferenceCollinson ME, van Bergen PF. 2004. Evolution of angiosperm fruit and seed dispersal biology and ecophysiology: morphological, anatomical and chemical evidence from fossils. In: Hemsley AR, Poole I, eds. The evolution of plant physiology. London: Elsevier, 344 – 377.en_US
dc.identifier.citedreferenceCollinson ME, Boulter MC, Holmes PL. 1993. Magnoliophyta (‘Angiospermae’). In: Benton MJ, ed. The fossil record 2. London: Chapman and Hall, 809 – 841.en_US
dc.identifier.citedreferenceCollinson ME, Cleal CJ. 2001. The palaeobotany of the Palaeocene and Palaeocene‐Eocene trasitional strata in Great Britain. In: Cleal CJ, Thomas BA, Batten DJ, Collinson ME, eds. Mesozoic and Tertiary palaeobotany of Great Britain. Peterborough: Joint Nature Conservation Committee, 155 – 184.en_US
dc.identifier.citedreferenceCollinson ME, Hooker JJ, Gröcke DR. 2003. Cobham Lignite Bed and penecontemporaneous macrofloras of southern England: a record of vegetation and fire across the Paleocene‐Eocene Thermal Maximum. In: Wing SL, Gingerich PD, Schmitz B, Thomas E, eds. Causes and consequences of globally warm climates in the Early Paleogene. Boulder, CO, Geological Society of America Special Paper 369, 333 – 349.en_US
dc.identifier.citedreferenceConran JG. 1997. Paracordyline kerguelensis, an Oligocene monocotyledon macrofossil from the Kerguélen Islands. Alcheringa 21: 129 – 140.en_US
dc.identifier.citedreferenceConran JG, Bannister JM, Lee DE. 2009a. Earliest orchid macrofossils: early Miocene Dendrobium and Earina (Orchidaceae: Epidendroideae) from New Zealand. American Journal of Botany 96: 466 – 474.en_US
dc.identifier.citedreferenceConran JG, Bannister JM, Mildenhall DC, Lee DE, Chacon J, Renner SS. 2014. Leaf fossils of Luzuriaga and a monocot flower with in situ pollen of Liliacidites contortus Mildenh. & Bannister sp. nov. (Alstroemeriaceae) from the Early Miocene. American Journal of Botany 101: 141 – 155.en_US
dc.identifier.citedreferenceConran JG, Carpenter RJ, Jordan GJ. 2009b. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Australian Systematic Botany 22: 219 – 228.en_US
dc.identifier.citedreferenceConran JG, Christophel DC. 1998. Paracordyline aureonemoralis (Lomandraceae): an Eocene monocotyledon from South Australia. Alcheringa 22: 349 – 357.en_US
dc.identifier.citedreferenceConran JG, Christophel DC, Cunningham L. 2003. An Eocene monocotyledon from Nelly Creek, Central Australia, with affinities to Hemerocallidaceae (Lilianae: Asparagales). Alcheringa 27: 107 – 115.en_US
dc.identifier.citedreferenceCouper RA. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Paleontological Bulletin 22: 1 – 77.en_US
dc.identifier.citedreferenceCourtillot VE, Renne PR. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience 335: 113 – 140.en_US
dc.identifier.citedreferenceCouvreur TLP, Forest F, Baker WJ. 2011. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus‐level phylogeny of palms. BMC Biology 9: 44.en_US
dc.identifier.citedreferenceCrepet WL. 1978. Investigations of angiosperms from the Eocene of North America: an aroid inflorescence. Review of Palaeobotany and Palynology 25: 241 – 252.en_US
dc.identifier.citedreferenceCrepet WL, Feldman GD. 1991. The earliest remains of grasses in the fossil record. American Journal of Botany 78: 1010 – 1014.en_US
dc.identifier.citedreferenceCrepet WL, Nixon KC, Gandolfo MA. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American Journal of Botany 91: 1666 – 1682.en_US
dc.identifier.citedreferenceCusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY, Hesse M, Hetterscheid WLA, Keating RC, French JC. 2011. Relationships within the Araceae: comparison of morphological patterns with molecular phylogenies. American Journal of Botany 98: 654 – 668.en_US
dc.identifier.citedreferenceDaghlian CP. 1981. A review of the fossil record of monocotyledons. Botanical Review 47: 517 – 555.en_US
dc.identifier.citedreferenceDavis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. 2005. Explosive radiation of Malpighiales supports a mid‐Cretaceous origin of modern tropical rain forests. American Naturalist 165: E36 – E65.en_US
dc.identifier.citedreferenceDenk T, Güner HT, Grimm GW. 2014. From mesic to arid: leaf epidermal features suggest preadaptation in Miocene dragon trees ( Dracaena ). Review of Palaeobotany and Palynology 200: 211 – 228.en_US
dc.identifier.citedreferenceDettmann ME, Clifford HT. 2000. Monocotyledon fruits and seeds, and an associated palynoflora from Eocene–Oligocene sediments of coastal central Queensland, Australia. Review of Palaeobotany and Palynology 110: 141 – 173.en_US
dc.identifier.citedreferenceDinis JL, Rey J, Cunha PP, Callapez P, Pena dos Reis R. 2008. Stratigraphy and allogenic controls of the western Portugal Cretaceous: an updated synthesis. Cretaceous Research 29: 772 – 780.en_US
dc.identifier.citedreferenceDonoghue MJ, Moore BR. 2003. Toward an integrative historical biogeography. Integrative and Comparative Biology 43: 261 – 270.en_US
dc.identifier.citedreferenceDos Reis M, Yang Z. 2011. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Molecular Biology and Evolution 28: 2161 – 2172.en_US
dc.identifier.citedreferenceDos Reis M, Yang Z. 2013. The unbearable uncertainty of Bayesian divergence time estimation. Journal of Systematics and Evolution 51: 30 – 43.en_US
dc.identifier.citedreferenceDoyle JA. 1973. Fossil evidence on early evolution of the monocotyledons. Quarterly Review of Biology 48: 399 – 413.en_US
dc.identifier.citedreferenceDoyle JA, Endress PK. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. Journal of Systematics and Evolution 48: 1 – 35.en_US
dc.identifier.citedreferenceDoyle JA, Endress PK. 2014. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. International Journal of Plant Sciences 175: 555 – 600.en_US
dc.identifier.citedreferenceDoyle JA, Endress PK, Upchurch GR. 2008. Early Cretaceous monocots: a phylogenetic evaluation. Acta Musei Nationalis Pragae: Series B – Historia Naturalis 64: 59 – 87.en_US
dc.identifier.citedreferenceDoyle JA, Hickey LJ. 1976. Pollen and leaves from the mid‐Cretaceous Potomac Group and their bearing on early angiosperm evolution. In: Beck CB, ed. Origin and early evolution of angiosperms. New York: Columbia University Press, 139 – 206.en_US
dc.identifier.citedreferenceDoyle JA, Robbins EI. 1977. Angiosperm pollen zonation of the continental Cretaceous of the Atlantic Coastal Plain and its application to deep wells in the Salisbury Embayment. Palynology 1: 43 – 78.en_US
dc.identifier.citedreferenceDrábková LZ. 2010. Phylogenetic relationships within Juncaceae: evidence from five regions of plastid, mitochondrial nuclear ribosomal DNA, with notes on morphology. In: Seberg O, Petersen G, Barfod AS, Davis JI, eds. Diversity, phylogeny, and evolution in the monocotyledons. Aarhus: Aarhus University Press, 389 – 416.en_US
dc.identifier.citedreferenceDransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE. 2008. Genera Palmarum: the evolution and classification of palms. Kew: Royal Botanic Gardens.en_US
dc.identifier.citedreferenceDrummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.en_US
dc.identifier.citedreferenceEdwards EJ, Osborne CP, Strömberg CAE, Smith SA; C 4 Grasses Consortium. 2010. The origins of C 4 grasslands: integrating evolutionary and ecosystem science. Science 328: 587 – 591.en_US
dc.identifier.citedreferenceEisawi A, Schrank E. 2008. Upper Cretaceous to Neogene palynology of the Melut Basin, southeast Sudan. Palynology 32: 101 – 129.en_US
dc.identifier.citedreferenceElsik WC. 1968. Palynology of a Paleocene Rockdale Lignite, Milam County, Texas. I. Morphology and taxonomy. Pollen et Spores 10: 263 – 314.en_US
dc.identifier.citedreferenceErwin DM, Stockey RA. 1989. Permineralized monocotyledons from the Middle Eocene Princeton chert (Allenby Formation) of British Columbia: Alismataceae. Canadian Journal of Botany 67: 2636 – 2645.en_US
dc.identifier.citedreferenceEvanoff E, McIntosh WC, Murphey PC. 2001. Stratigraphic summary and 40 Ar/ 39 Ar geochronology of the Florissant Formation, Colorado. In: Evanoff E, Gregory‐Wodzicki KM, Johnson KR, eds. Fossil flora and stratigraphy of the Florissant Formation, Colorado. Denver: Proceedings of the Denver Museum of Nature and Science, Series 4, Number 1, 1 – 16.en_US
dc.identifier.citedreferenceFantozzi P, Kassim Mohamed A. 2002. Geological mapping in northeastern Somalia (Midjiurtinia region): field evidence of the structural and paleogeographic evolution of the northern margin of the Somalian plate. Journal of African Earth Sciences 34: 21 – 55.en_US
dc.identifier.citedreferenceFedotov VV. 1975. On systematic assignment of the genus Nitophyllites. Paleontologicheskii Zhurnal 1: 133 – 136.en_US
dc.identifier.citedreferenceFischer TC, Butzmann R, Meller B, Rattei T, Newman M, Hölscher D. 2009. The morphology, systematic position and inferred biology of Spirematospermum – an extinct genus of Zingiberales. Review of Palaeobotany and Palynology 157: 391 – 426.en_US
dc.identifier.citedreferenceFontaine WM. 1889. The Potomac or younger Mesozoic flora: United States Geological Survey Monograph 15. Washington, DC: Government Printing Office.en_US
dc.identifier.citedreferenceFranzen JL. 2005. The implications of the numerical dating of the Messel fossil deposit (Eocene, Germany) for mammalian biochronology. Annales de Paléontologie 91: 329 – 335.en_US
dc.identifier.citedreferenceFreudenstein JV, van der Berg C, Goldman DH, Kores PJ, Molvray M, Chase MW. 2004. An expanded plastid DNA phylogeny of Orchidaceae and analysis of jackknife branch support strategy. American Journal of Botany 91: 149 – 157.en_US
dc.identifier.citedreferenceFriis EM. 1988. Spirematospermum chandlerae sp. nov., an extinct species of Zingiberaceae from the North American Cretaceous. Tertiary Research 9: 7 – 12.en_US
dc.identifier.citedreferenceFriis EM, Crane PR, Pedersen KR. 2011. Early flowers and angiosperm evolution. Cambridge: Cambridge University Press.en_US
dc.identifier.citedreferenceFriis EM, Pedersen KR, Crane PR. 2000. Fossil floral structures of a basal angiosperm with monocolpate, reticulate‐acolumellate pollen from the Early Cretaceous of Portugal. Grana 39: 226 – 239.en_US
dc.identifier.citedreferenceFriis EM, Pedersen KR, Crane PR. 2004. Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. Proceedings of the National Academy of Sciences of the United States of America 101: 16565 – 16570.en_US
dc.identifier.citedreferenceFriis EM, Pedersen KR, Crane PR. 2010. Diversity in obscurity: fossil flowers and the early history of angiosperms. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365: 369 – 382.en_US
dc.identifier.citedreferenceFurness CA, Rudall PJ. 2006. Comparative structure and development of pollen and tapetum in Pandanales. International Journal of Plant Sciences 167: 331 – 348.en_US
dc.identifier.citedreferenceFutey MK, Gandolfo MA, Zamaloa MC, Cúneo R, Cladera G. 2012. Arecaceae fossil fruits from the Paleocene of Patagonia, Argentina. Botanical Review 78: 205 – 234.en_US
dc.identifier.citedreferenceGandolfo MA, Nixon KC, Crepet WL. 2000. Monocotyledons: a review of their Early Cretaceous record. In: Wilson KL, Morrison DA, eds. Monocots: systematics and evolution. Collingwood: CSIRO, 44 – 51.en_US
dc.identifier.citedreferenceGandolfo MA, Nixon KC, Crepet WL. 2002. Triuridaceae fossil flowers from the Upper Cretaceous of New Jersey. American Journal of Botany 89: 1940 – 1957.en_US
dc.identifier.citedreferenceGandolfo MA, Nixon KC, Crepet WL. 2008. Selection of fossils for calibration of molecular dating models. Annals of the Missouri Botanical Garden 95: 34 – 42.en_US
dc.identifier.citedreferenceGandolfo MA, Nixon KC, Crepet WL, Stevenson DW, Friis EM. 1998. Oldest known fossils of monocotyledons. Nature 394: 532 – 533.en_US
dc.identifier.citedreferenceLarkum AWD, Orth RJ, Duarte CM. 2006. Seagrasses: biology, ecology and conservation. Berlin: Springer.en_US
dc.identifier.citedreferenceGandolfo MA, Zamaloa MdelC, Cúneo NR, Archangelsky A. 2009. Potamogetonaceae fossil fruits from the Tertiary of Patagonia, Argentina. International Journal of Plant Sciences 170: 419 – 428.en_US
dc.identifier.citedreferenceGiret A, Lameyre J, Beaux JF, Gautier I, Verdier O, Chotin P, Cantagrel JM. 1989. Géologie, deux siècles de recherche dans les Îles Kerguelen. In: Laubier L, ed. Actes du Colloque sur la recherche Française dans les Terres Australes (Kerguelen, Crozet, Saint‐Paul et Amsterdam) et à partir des navires qui les desservent, Strasbourg 1987. Paris: Comité National Français des Recherches Antarctiques, 345 – 355.en_US
dc.identifier.citedreferenceGohn GS, Dowsett HJ, Sohl NF. 1992. Biostratigraphy of the Middendorf Formation (Upper Cretaceous) in a corehole at Myrtle Beach, South Carolina. U.S. Geological Survey Bulletin 2030: 1 – 12.en_US
dc.identifier.citedreferenceGolovneva LB. 1997. Morphology, systematics and distribution of the genus Haemanthophyllum in the Paleogene floras of the Northern Hemisphere. Paleontologischeskii Zhurnal 31: 197 – 207.en_US
dc.identifier.citedreferenceGómez‐Navarro C, Jaramillo C, Herrera F, Wing SL, Callejas R. 2009. Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. American Journal of Botany 96: 1300 – 1312.en_US
dc.identifier.citedreferenceGórniak M, Paun O, Chase MW. 2010. Phylogenetic relationships within Orchidaceae based on a low‐copy nuclear coding gene, Xdh: congruence with organellar and nuclear ribosomal DNA results. Molecular Phylogenetics and Evolution 56: 784 – 795.en_US
dc.identifier.citedreferenceGraham SW, Zgurski JM, McPherson MA, Cherniawsky DM, Saarela JM, Horne EFC, Smith SY, Wong WA, O'Brien HE, Biron VL, Pires JC, Olmstead RG, Chase MW, Rai HS. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, eds. Monocots: comparative biology and evolution (excluding Poales). Claremont: Rancho Santa Ana Botanic Garden, 3 – 20.en_US
dc.identifier.citedreferenceGrande L. 1984. Paleontology of the Green River Formation, with a review of the fish fauna, second edition. Geological Survey of Wyoming Bulletin 63: 1 – 333.en_US
dc.identifier.citedreferenceGrass Phylogeny Working Group. 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of the Missouri Botanical Garden 88: 373 – 457.en_US
dc.identifier.citedreferenceGrass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C 4 origins. New Phytologist 193: 304 – 312.en_US
dc.identifier.citedreferenceGrayum MH. 1987. A summary of evidence and arguments supporting the removal of Acorus from the Araceae. Taxon 36: 723 – 729.en_US
dc.identifier.citedreferenceGreenwood DR, Conran JG. 2000. The Australian Cretaceous and Tertiary monocot fossil record. In: Wilson KL, Morrison DA, eds. Monocots: systematics and evolution. Collingwood: CSIRO, 52 – 59.en_US
dc.identifier.citedreferenceGrímsson F, Zetter R, Halbritter H, Grimm GW. 2014. Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: implications for the origin and palaeobiogeography of the genus. Review of Palaeobotany and Palynology 200: 161 – 187.en_US
dc.identifier.citedreferenceHaggard KK, Tiffney BH. 1997. The flora of the Early Miocene Brandon Lignite, Vermont, USA. VIII. Caldesia (Alismataceae). American Journal of Botany 84: 239 – 252.en_US
dc.identifier.citedreferencevan der Ham RWJM, van Konijnenburg‐van Cittert JHA, Indeherberge L. 2007. Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology 144: 301 – 321.en_US
dc.identifier.citedreferenceHarley MM. 2006. A summary of fossil records for Arecaceae. Botanical Journal of the Linnean Society 151: 39 – 67.en_US
dc.identifier.citedreferenceHarley MM, Baker WJ. 2001. Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of record of palm‐like pollen. Grana 40: 45 – 77.en_US
dc.identifier.citedreferenceHeath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth–death process for coherent calibration of divergence‐time estimates. Proceedings of the National Academy of Sciences of the United States of America 111: E2957 – E2966.en_US
dc.identifier.citedreferenceHeimhofer H, Hochuli PA, Burla S, Weissert H. 2007. New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: implications for the timing of the early angiosperm radiation. Review of Palaeobotany and Palynology 144: 36 – 76.en_US
dc.identifier.citedreferenceHenriquez CL, Arias T, Pires JC, Croat TB, Schaal BA. 2014. Phylogenomics of the plant family Araceae. Molecular Phylogenetics and Evolution 75: 91 – 102.en_US
dc.identifier.citedreferenceHerendeen PS, Crane PR. 1995. The fossil history of the monocotyledons. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, eds. Monocotyledons: systematics and evolution. Kew: Royal Botanic Gardens, 1 – 21.en_US
dc.identifier.citedreferenceHerman AB, Kvaček J. 2010. Late Cretaceous Grünbach Flora of Austria. Vienna: Naturhistorisches Museum Wien.en_US
dc.identifier.citedreferenceHerrera FA, Jaramillo CA, Dilcher DL, Wing SL, Gómez‐Navarro C. 2008. Fossil Araceae from a Paleocene neotropical rainforest in Colombia. American Journal of Botany 95: 1569 – 1583.en_US
dc.identifier.citedreferenceHesse M. 2002. The uniquely designed pollen aperture in Lasioideae (Araceae). Aroideana 25: 51 – 59.en_US
dc.identifier.citedreferenceHesse M, Zetter R. 2007. The fossil pollen record of Araceae. Plant Systematics and Evolution 263: 93 – 115.en_US
dc.identifier.citedreferenceHicks JF. 1993. Chronostratigraphic analysis of the Foreland Basin sediments of the latest Cretaceous, Wyoming, U.S.A. Unpublished PhD Thesis, Yale University.en_US
dc.identifier.citedreferenceLee DE, Conran JG, Lindqvist JK, Bannister JM, Mildenhall DC. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. Botanical Review 78: 235 – 260.en_US
dc.identifier.citedreferenceHicks JF, Johnson KR, Obradovich JD, Tauxe L, Clark D. 2002. Magnetostratigraphy and geochronology of the Hell Creek and basal Fort Union Formations of southwestern North Dakota and a recalibration of the age of the Cretaceous‐Tertiary boundary. In: Hartman JH, Johnson KR, Nichols DJ, eds. The Hell Creek Formation and the Cretaceous–Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Boulder, CO, Geological Society of America Special Paper 361, 35 – 55.en_US
dc.identifier.citedreferenceHo SYW, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58: 367 – 380.en_US
dc.identifier.citedreferenceHochuli PA, Heimhofer U, Weissert H. 2006. Timing of early angiosperm radiation: recalibrating the classical succession. Journal of the Geological Society 163: 587 – 594.en_US
dc.identifier.citedreferencevan Hoeken‐Klinkenberg PMJ. 1964. A palynological investigation of some Upper‐Cretaceous sediments in Nigeria. Pollen et Spores 6: 209 – 231.en_US
dc.identifier.citedreferenceHofmann CC, Zetter R. 2010. Upper Cretaceous sulcate pollen from the Timerdyakh Formation, Vilui Basin (Siberia). Grana 49: 170 – 193.en_US
dc.identifier.citedreferenceHooker JJ, Grimes ST, Mattey DP, Collinson ME, Sheldon ND. 2009. Refined correlations of the UK Late Eocene–Early Oligocene Solent Group and timing of its climate history. In: Koeberl C, Montanari A, eds. The Late Eocene earth – hothouse, icehouse, and impacts. Boulder, CO, Geological Society of America Special Paper 452, 179 – 195.en_US
dc.identifier.citedreferenceHotton CL, Leffingwell HA, Skvarla JJ. 1994. Pollen ultrastructure of Pandanaceae and the fossil genus Pandaniidites. In: Kurmann MH, Doyle JA, eds. Ultrastructure of fossil spores and pollen. Kew: Royal Botanic Gardens, 173 – 191.en_US
dc.identifier.citedreferenceIles WJD, Lee C, Sokoloff DD, Remizowa MV, Yadav SR, Barrett MD, Barrett RL, Macfarlane TD, Rudall PJ, Graham SW. 2014. Reconstructing the age and historical biogeography of the ancient flowering‐plant family Hydatellaceae (Nymphaeales). BMC Evolutionary Biology 14: 102.en_US
dc.identifier.citedreferenceIles WJD, Smith SY, Graham SW. 2013. A well‐supported phylogenetic framework for the monocot order Alismatales reveals multiple losses of the plastid NADH dehydrogenase complex and a strong long‐branch effect. In: Wilkin P, Mayo SJ, eds. Early events in monocot evolution. Cambridge: Cambridge University Press, 1 – 28.en_US
dc.identifier.citedreferenceIljinskaja IA. 1963. Fossil flora of the Mountain Kiin‐Kerish of the Zaisan Basin. II. Palaeobotanica (Komarov) 4: 141 – 187.en_US
dc.identifier.citedreferenceIPNI Consortium. 2012. The International Plant Names Index. Available at: http://www.ipni.org/en_US
dc.identifier.citedreferenceIturralde‐Vinent MA, MacPhee RDE. 1996. Age and paleogeographical origin of Dominican amber. Science 273: 1850 – 1852.en_US
dc.identifier.citedreferenceJacobs BF, Judziewicz EJ, Kabuye CHS. 2014. A Miocene pharoid grass (Poaceae: Pharoideae) from Kenya and implications for mid‐Miocene paleoecology. Paleontological Society Special Publications (10th North American Paleontological Convention Abstract Book) 13: 135.en_US
dc.identifier.citedreferenceJacobs BF, Kabuye CHS. 1987. A middle Miocene (12.2 my old) forest in the East African Rift Valley, Kenya. Journal of Human Evolution 16: 147 – 155.en_US
dc.identifier.citedreferenceJacobs BF, Kingston JD, Jacobs LL. 1999. The origin of grass‐dominated ecosystems. Annals of the Missouri Botanical Garden 86: 590 – 643.en_US
dc.identifier.citedreferenceJaramillo CA, Bayona G, Pardo‐Trujillo A, Rueda M, Torres V, Harrington GJ, Mora G. 2007. The palynology of the Cerrejón Formation (Upper Paleocene) of northern Colombia. Palynology 31: 153 – 189.en_US
dc.identifier.citedreferenceJarzen DM. 1978. Some Maestrichtian palynomorphs and their phytogeographical and paleoecological implications. Palynology 2: 29 – 38.en_US
dc.identifier.citedreferenceJarzen DM. 1983. The fossil pollen record of the Pandanaceae. Gardens. Bulletin Singapore 36: 163 – 175.en_US
dc.identifier.citedreferenceJohnson KR. 2002. Megaflora of the Hell Creek and lower Fort Union Formations in the western Dakotas: vegetational response to climate change, the Cretaceous‐Tertiary boundary event, and rapid marine transgression. In: Hartman JH, Johnson KR, Nichols DJ, eds. The Hell Creek Formation and the Cretaceous‐Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Boulder, CO, Geological Society of America Special Paper 361, 329 – 391.en_US
dc.identifier.citedreferenceJudziewicz EJ, Clark LG. 2007. Classification and biogeography of new world grasses: Anomochloideae, Pharoideae, Ehrhartoideae, and Bambusoideae. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, eds. Monocots: comparative biology and evolution – Poales. Claremont: Rancho Santa Ana Botanic Garden, 303 – 314.en_US
dc.identifier.citedreferenceKar RK. 1985. The fossil floras of Kachchh – IV. Tertiary palynostratigraphy. Palaeobotanist 34: 1 – 279.en_US
dc.identifier.citedreferenceKar RK, Bhattacharya M. 1992. Palynology of Rajpardi lignite, Cambay Basin and Gujra Dam and Akri lignite, Kutch Basin. Palaeobotanist 39: 250 – 263.en_US
dc.identifier.citedreferenceKnobloch E, Mai DH. 1986. Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpravy Ústředního ústavu Geologického 47: 1 – 219.en_US
dc.identifier.citedreferenceKrassilov V. 1973. Cuticular structure of Cretaceous angiosperms from the far east of the USSR. Palaeontographica Abteilung B: Paläophytologie 142: 105 – 116.en_US
dc.identifier.citedreferenceKvaček J, Herman AB. 2004. Monocotyledons from the early Campanian (Cretaceous) of Grünbach, Lower Austria. Review of Palaeobotany and Palynology 128: 323 – 353.en_US
dc.identifier.citedreferenceKvaček Z. 1995. Limnobiophyllum Krassilov – a fossil link between the Araceae and the Lemnaceae. Aquatic Botany 50: 49 – 61.en_US
dc.identifier.citedreferenceLepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Molecular Biology and Evolution 24: 2669 – 2680.en_US
dc.identifier.citedreferenceLes DH, Cleland MA, Waycott M. 1997. Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany 22: 443 – 463.en_US
dc.identifier.citedreferenceLes DH, Moody ML, Jacobs SWL. 2005. Phylogeny and systematics of Aponogeton (Aponogetonaceae): the Australian species. Systematic Botany 30: 503 – 519.en_US
dc.identifier.citedreferenceLes DH, Moody ML, Soros CL. 2006. A reappraisal of the phylogenetic relationships in the monocotyledon family Hydrocharitaceae (Alismatidae). In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, eds. Monocots: comparative biology and evolution (excluding Poales). Claremont: Rancho Santa Ana Botanic Garden, 211 – 230.en_US
dc.identifier.citedreferenceLinder HP. 1987. The evolutionary history of the Poales/Restionales: a hypothesis. Kew Bulletin 42: 297 – 318.en_US
dc.identifier.citedreferenceLinder HP, Ferguson IK. 1985. On the pollen morphology and phylogeny Restionales and Poales. Grana 24: 65 – 76.en_US
dc.identifier.citedreferenceLindqvist JK, Lee DE. 2009. High‐frequency paleoclimate signals from Foulden Maar, Waipiata Volcanic Field, southern New Zealand: an Early Miocene varved lacustrine diatomite deposit. Sedimentary Geology 222: 98 – 110.en_US
dc.identifier.citedreferenceLucas SG, Bray ES, Emry RJ, Hirsch KF. 2012. Dinosaur eggshell and the Cretaceous–Paleogene boundary in the Zaysan Basin, eastern Kazakstan. Journal of Stratigraphy 36: 417 – 435.en_US
dc.identifier.citedreferenceLumbert SH, den Hartog C, Phillips RC, Olsen FS. 1984. The occurrence of fossil seagrasses in the Avon Park Formation (Late Middle Eocene), Levy County, Florida (U.S.A.). Aquatic Botany 20: 121 – 129.en_US
dc.identifier.citedreferenceMacGinitie HD. 1953. Fossil plants of the Florissant Beds, Colorado. Washington, DC: Carniegie Institution of Washington Publication 599.en_US
dc.identifier.citedreferenceMaciunas E, Conran JG, Bannister JM, Paull R, Lee DE. 2011. Miocene Astelia (Asparagales: Asteliaceae) macrofossil from southern New Zealand. Australian Systematic Botany 24: 19 – 31.en_US
dc.identifier.citedreferenceMacphail MK. 1999. Palynostratigraphy of the Murray Basin, inland southeastern Australia. Palynology 23: 197 – 240.en_US
dc.identifier.citedreferenceMacphail MK, Alley NF, Truswell EM, Sluiter IRK. 1994. Early Tertiary vegetation: evidence from spores and pollen. In: Hill RS, ed. History of the Australian vegetation: Cretaceous to recent. Cambridge: Cambridge University Press, 189 – 261.en_US
dc.identifier.citedreferenceMagallón S, Sanderson MJ. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762 – 1780.en_US
dc.identifier.citedreferenceMagallón SA. 2004. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. International Journal of Plant Sciences 165: S7 – S21.en_US
dc.identifier.citedreferenceMai DH. 2000. The middle and upper miocene floras of Meuro and Rauno sequences in the Lusatica region. Part I: waterferns, conifers, monocotyledons. Palaeontographica Abteilung B: Paläophytologie 256: 1 – 68.en_US
dc.identifier.citedreferenceManchester SR. 2001. Update on the megafossil flora of Florissant, Colorado. Denver Museum of Nature and Science 4: 137 – 216.en_US
dc.identifier.citedreferenceManchester SR, O'Leary EL. 2010. Phylogenetic distribution and identification of fin‐winged fruits. Botanical Review 76: 1 – 82.en_US
dc.identifier.citedreferenceMarshall CR. 2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. American Naturalist 171: 726 – 742.en_US
dc.identifier.citedreferenceMassoni J, Doyle JA, Sauquet H. 2014. Fossil calibration of Magnoliidae, an ancient lineage of angiosperms. Palaeontologia Electronica 17.3: 2FC.en_US
dc.identifier.citedreferenceMayo SJ, Bogner J, Boyce PC. 1997. The genera of Araceae. Kew: Royal Botanic Gardens.en_US
dc.identifier.citedreferenceMehrotra RC. 1987. Some new palm fruits from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh. Geophytology 17: 204 – 208.en_US
dc.identifier.citedreferenceMennes CB, Smets EF, Moses SN, Merckx VSFT. 2013. New insights in the long‐debated evolutionary history of Triuridaceae (Pandanales). Molecular Phylogenetics and Evolution 69: 994 – 1004.en_US
dc.identifier.citedreferenceMertz DE, Renne PR. 2005. A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40 Ar/ 39 Ar dating on a basaltic rock fragment. Courier Forschungsintitut Senckenberg 255: 67 – 75.en_US
dc.identifier.citedreferenceMiller JA. 1986. Hydrogeologic framework of the Floridan Aquifer System in Florida and in parts of Georgia, Alabama, and South Carolina. US Geological Survey Professional Paper 1403–B: B1 – B91.en_US
dc.identifier.citedreferenceMitra M, Mickle JE. 2007. Palynological age assessment of localities (Tar Heel Formation) in North Carolina. Journal of the North Carolina Academy of Science 123: 60 – 64.en_US
dc.identifier.citedreferenceMuller J. 1981. Fossil pollen records of extant angiosperms. Botanical Review 47: 1 – 142.en_US
dc.identifier.citedreferenceNambudiri EMV, Tidwell WD, Smith BN, Hebbert NP. 1978. A C4 plant from the Pliocene. Nature 276: 816 – 817.en_US
dc.identifier.citedreferenceNauheimer L, Metzler D, Renner SS. 2012. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytologist 195: 938 – 950.en_US
dc.identifier.citedreferenceNeubig KM, Whitten WM, Carlsward BS, Blanco MA, Endara L, Williams NH, Moore M. 2008. Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK. Plant Systematics and Evolution 277: 75 – 84.en_US
dc.identifier.citedreferenceNichols DJ. 1987. Palynology of the Vermillion Creek coal bed and associated strata. In: Roehler HW, Martin PL, eds. Geological investigations of the Vermillion Creek coal bed in the Eocene Niland Tongue of the Wasatch Formation, Sweetwater County, Wyoming: U.S. Geological Survey Professional paper 1314A‐L. Washington: United States Government Printing Office, 47 – 73.en_US
dc.identifier.citedreferenceNoon TA. 1980. Stratigraphic drilling report GSQ Rockhampton 1. Queensland Government Mining Journal 81: 261 – 266.en_US
dc.identifier.citedreferenceNowak MD, Smith AB, Simpson C, Zwickl DJ. 2013. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS ONE 8: e66245.en_US
dc.identifier.citedreferenceOwens JP, Sohl NF. 1989. Carolina Geological Society field trip guidebook: October 28–29, 1989: Campanian and Maastrichtian depositional systems of the Black Creek Group of the Carolinas. Raleigh, NC: North Carolina Geological Survey.en_US
dc.identifier.citedreferencePan AD. 2010. Rutaceae leaf fossils from the Late Oligocene (27.23 Ma) Guang River flora of northwestern Ethiopia. Review of Palaeobotany and Palynology 159: 188 – 194.en_US
dc.identifier.citedreferencePan AD, Jacobs BF, Currano ED. 2014. Dioscoreaceae fossils from the late Oligocene and early Miocene of Ethiopia. Botanical Journal of the Linnean Society 175: 17 – 28.en_US
dc.identifier.citedreferencePan AD, Jacobs BF, Dransfield J, Baker WJ. 2006. The fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28–27 Mya) of north‐western Ethiopia. Botanical Journal of the Linnean Society 151: 69 – 81.en_US
dc.identifier.citedreferenceParadis E. 2013. Molecular dating of phylogenies by likelihood methods: a comparison of models and a new information criterion. Molecular Phylogenetics and Evolution 67: 436 – 444.en_US
dc.identifier.citedreferenceParham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ. 2012. Best practices for justifying fossil calibrations. Systematic Biology 61: 346 – 359.en_US
dc.identifier.citedreferenceParham JF, Irmis RB. 2008. Caveats on the use of fossil calibrations for molecular dating: a comment on Near et al. American Naturalist 171: 132 – 136.en_US
dc.identifier.citedreferencePatil GV, Upadhye EV. 1984. Cocos like fruit from the Mahgaonkalan and its significance towards the stratigraphy of the Mohgaonkalan Intertrappean Beds. In: Sharma AK, Mitra GC, Banerjee M, eds. Proceedings of the symposium on evolutionary botany and biostratigraphy. New Delhi: Today & Tomorrows Printers and Publishers, 541 – 554.en_US
dc.identifier.citedreferencePerkins ME, Brown FH, Nash WP, Williams SK, McIntosh W. 1998. Sequence, age, and source of silicic fallout tuffs in middle to late Miocene basins of the northern Basin and Range province. Geological Society of America Bulletin 110: 344 – 360.en_US
dc.identifier.citedreferencePiperno DR. 2006. Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Lanhem: Altamira Press.en_US
dc.identifier.citedreferencePirie MD, Doyle JA. 2013. Dating clades with fossils and molecules: the case of Annonaceae. Botanical Journal of the Linnean Society 169: 84 – 116.en_US
dc.identifier.citedreferencePoinar G. 2011. Silica bodies in the Early Cretaceous Programinis laminatus (Angiospermae: Poales). Palaeodiversity 4: 1 – 6.en_US
dc.identifier.citedreferencePoinar G, Columbus JT. 2013. Alarista succina gen. et sp. nov. (Poaceae: Bambusoideae) in Dominican amber. Historical Biology 25: 691 – 696.en_US
dc.identifier.citedreferencePoinar G, Judziewicz EJ. 2005. Pharus primuncinatus (Poaceae: Pharoideae: Phareae) from Dominican amber. Sida 21: 2095 – 2103.en_US
dc.identifier.citedreferencePoinar GO, Columbus JT. 1992. Adhesive grass spikelet with mammalian hair in Dominican amber: first fossil evidence of epizoochory. Experientia 48: 906 – 908.en_US
dc.identifier.citedreferencePole M. 2007a. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan‐Regatta Point, Tasmania. Palaeontologia Electronica 10: 16A.en_US
dc.identifier.citedreferencePole M. 2007b. Monocot macrofossil from the Miocene of southern New Zealand. Palaeontologia Electronica 10: 15A.en_US
dc.identifier.citedreferencePrasad V, Strömberg CAE, Alimohammadian H, Sahni A. 2005. Dinosaur coprolites and the early evolution of grasses and grazers. Science 310: 1177 – 1180.en_US
dc.identifier.citedreferencePrasad V, Strömberg CAE, Leaché AD, Samant B, Patnaik R, Tang L, Mohabey DM, Ge S, Sahni A. 2011. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nature Communications 2: 480.en_US
dc.identifier.citedreferencePrychid CJ, Rudall PJ, Gregory M. 2004. Systematics and biology of silica bodies in monocotyledons. Botanical Review 69: 377 – 440.en_US
dc.identifier.citedreferenceRamírez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448: 1042 – 1045.en_US
dc.identifier.citedreferenceRiley MG, Stockey RA. 2004. Cardstonia tolmanii gen. et sp. nov. (Limnocharitaceae) from the Upper Cretaceous of Alberta, Canada. International Journal of Plant Sciences 165: 897 – 916.en_US
dc.identifier.citedreferenceRomaschenko K, Peterson PM, Soreng RJ, Garcia‐Jacas N, Susanna A. 2010. Phylogenetics of Stipeae (Poaceae: Poideae) based on plastid and nuclear DNA sequences. In: Seberg O, Petersen G, Barfod AS, Davis JI, eds. Diversity, phylogeny and evolution in the monocotyledons. Aarhus: Aarhus University Press, 511 – 537.en_US
dc.identifier.citedreferenceRudall PJ. 2003. Monocot pseudanthia revisited: floral structure of the mycoheterotrophic family Triuridaceae. International Journal of Plant Sciences 164: S307 – S320.en_US
dc.identifier.citedreferenceRutschmann F. 2006. Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Diversity and Distributions 12: 35 – 48.en_US
dc.identifier.citedreferenceSaarela JM, Graham SW. 2010. Inference of phylogenetic relationships among the subfamilies of grasses (Poaceae: Poales) using meso‐scale exemplar‐based sampling of the plastid genome. Botany 88: 65 – 84.en_US
dc.identifier.citedreferenceSabaj Pérez MH. 2013. Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an online reference version 4.0. Washington, DC: American Society of Ichthyologists and Herpetologists, available at: http://www.asih.org/en_US
dc.identifier.citedreferenceSanderson MJ. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular Biology and Evolution 14: 1218 – 1231.en_US
dc.identifier.citedreferenceSanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301 – 302.en_US
dc.identifier.citedreferenceSanderson MJ, Doyle JA. 2001. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. American Journal of Botany 88: 1499 – 1516.en_US
dc.identifier.citedreferenceSaraswati PK, Sarkar U, Banerjee S. 2012. Nummulites solitarius – Nummulites burdigalensis lineage in Kutch with remarks on the age of Naredi Formation. Journal of the Geological Society of India 79: 476 – 482.en_US
dc.identifier.citedreferenceSauquet H. 2013. A practical guide to molecular dating. Comptes Rendus Palevol 12: 355 – 367.en_US
dc.identifier.citedreferenceSauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, Bayly MJ, Bromham L, Brown GK, Carpenter RJ, Lee DM, Murphy DJ, Sniderman JMK, Udovicic F. 2012. Testing the impact of calibration on molecular divergence times using a fossil‐rich group: the case of Nothofagus (Fagales). Systematic Biology 61: 289 – 313.en_US
dc.identifier.citedreferenceSchrank E. 1994. Palynology of the Yesomma Formation in northern Somalia: a study of pollen, spores and associated phytoplankton from the Late Cretaceous Palmae Province. Palaeontographica Abteilung B: Paläophytologie 231: 63 – 112.en_US
dc.identifier.citedreferenceSeberg O, Petersen G, Davis JI, Pires JC, Stevenson DW, Chase MW, Fay MF, Devey DS, Jørgensen T, Sytsma KJ, Pillon Y. 2012. Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. American Journal of Botany 99: 875 – 889.en_US
dc.identifier.citedreferenceShi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. 2012. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretaceous Research 37: 155 – 163.en_US
dc.identifier.citedreferenceShukla A, Mehrotra RC, Guleria JS. 2012. Cocos sahnii Kaul: a Cocos nucifera L.‐like fruit from the Early Eocene rainforest of Rajasthan, western India. Journal of Biosciences 37: 769 – 776.en_US
dc.identifier.citedreferenceSille NP, Collinson ME, Kucera M, Hooker JJ. 2006. Morphological evolution of Stratiotes through the Paleogene in England: an example of microevolution in flowering plants. Palaios 21: 272 – 288.en_US
dc.identifier.citedreferenceSimpson DA, Muasya AM, Alves MV, Bruhl JJ, Dhooge S, Chase MW, Furness CA, Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Reznicek AA, Nieuwborg R, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Zhang X. 2006. Phylogeny of Cyperaceae based on DNA sequence data – a new rbcL analysis. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, eds. Monocots: comparative biology and evolution (excluding Poales). Claremont: Rancho Santa Ana Botanic Garden, 72 – 83.en_US
dc.identifier.citedreferenceSmith ME, Carroll AR, Singer BS. 2008a. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geological Society of America Bulletin 120: 54 – 84.en_US
dc.identifier.citedreferenceSmith SY. 2013. The fossil record of non‐commelinid monocots. In: Wilkin P, Mayo SJ, eds. Early events in monocot evolution. Cambridge: Cambridge University Press, 29 – 59.en_US
dc.identifier.citedreferenceSmith SY, Collinson ME, Rudall PJ. 2008b. Fossil Cyclanthus (Cyclanthaceae, Pandanales) from the Eocene of Germany and England. American Journal of Botany 95: 688 – 699.en_US
dc.identifier.citedreferenceSmith SY, Collinson ME, Rudall PJ, Simpson DA. 2010. Cretaceous and Paleogene fossil record of Poales: review and current research. In: Seberg O, Petersen G, Barfod AS, Davis JI, eds. Diversity, phylogeny and evolution in the monocotyledons. Aarhus: Aarhus University Press, 333 – 356.en_US
dc.identifier.citedreferenceSmith SY, Collinson ME, Simpson DA, Rudall PJ, Marone F, Stampanoni M. 2009. Elucidating the affinities and habitat of ancient, widespread Cyperaceae: Volkeria messelensis gen. et sp. nov., a fossil mapanioid sedge from the Eocene of Europe. American Journal of Botany 96: 1506 – 1518.en_US
dc.identifier.citedreferenceSmith SY, Stockey RA. 2003. Aroid seeds from the Middle Eocene Princeton Chert ( Keratosperma allenbyense, Araceae): comparisons with extant Lasioideae. International Journal of Plant Sciences 164: 239 – 250.en_US
dc.identifier.citedreferenceSohl NF, Owens JP. 1991. Cretaceous stratigraphy of the Carolina coastal plain. In: Horton JW, Zullo VA, eds. The geology of the Carolinas: Carolina Geological Society, 50th anniversary volume. Knoxville: University of Tennessee Press, 191 – 220.en_US
dc.identifier.citedreferenceSteele PR, Hertweck KL, Mayfield D, McKain MR, Leebens‐Mack J, Pires JC. 2012. Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. American Journal of Botany 99: 330 – 348.en_US
dc.identifier.citedreferenceStevens PF. 2001+. Angiosperm Phylogeny Website, version 12, July 2012 (and more or less continuously updated since). Available at: http://www.mobot.org/MOBOT/research/APweb/en_US
dc.identifier.citedreferenceStevenson DW, Loconte H. 1995. Cladistic analysis of monocot families. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, eds. Monocotelydons: systematics and evolution. Kew: Royal Botanic Gardens, 543 – 578.en_US
dc.identifier.citedreferenceStockey RA. 2006. The fossil record of basal monocots. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG, eds. Monocots: comparative biology and evolution (excluding Poales). Claremont: Rancho Santa Ana Botanic Garden, 91 – 106.en_US
dc.identifier.citedreferenceStockey RA, Hoffman GL, Rothwell GW. 1997. The fossil monocot Limnobiophyllum scutatum: resolving the phylogeny of Lemnaceae. American Journal of Botany 84: 355 – 368.en_US
dc.identifier.citedreferenceStockey RA, Rothwell GW, Johnson KR. 2007. Cobbania corrugata gen. et. comb. nov. (Araceae): a floating aquatic from the Upper Cretaceous of Western North America. American Journal of Botany 94: 609 – 624.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.