Show simple item record

Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications

dc.contributor.authorTank, David C.en_US
dc.contributor.authorEastman, Jonathan M.en_US
dc.contributor.authorPennell, Matthew W.en_US
dc.contributor.authorSoltis, Pamela S.en_US
dc.contributor.authorSoltis, Douglas E.en_US
dc.contributor.authorHinchliff, Cody E.en_US
dc.contributor.authorBrown, Joseph W.en_US
dc.contributor.authorSessa, Emily B.en_US
dc.contributor.authorHarmon, Luke J.en_US
dc.date.accessioned2015-07-01T20:56:01Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationTank, David C.; Eastman, Jonathan M.; Pennell, Matthew W.; Soltis, Pamela S.; Soltis, Douglas E.; Hinchliff, Cody E.; Brown, Joseph W.; Sessa, Emily B.; Harmon, Luke J. (2015). "Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications." New Phytologist 207(2): 454-467.en_US
dc.identifier.issn0028-646Xen_US
dc.identifier.issn1469-8137en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111924
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherangiosperm diversification ratesen_US
dc.subject.otherclade age and diversityen_US
dc.subject.othermodeling evolutionary diversification using stepwise AIC (MEDUSA)en_US
dc.subject.othernested radiationsen_US
dc.subject.otherpolyploidyen_US
dc.subject.otherwhole‐genome duplication radiation lag‐time modelen_US
dc.titleNested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111924/1/nph13491-sup-0001-FigS1-TableS1-S2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111924/2/nph13491.pdf
dc.identifier.doi10.1111/nph.13491en_US
dc.identifier.sourceNew Phytologisten_US
dc.identifier.citedreferenceSchranz ME, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag‐Time Model. Current Opinion in Plant Biology 15: 147 – 153.en_US
dc.identifier.citedreferenceSmith SA, Beaulieu JM, Donoghue MJ. 2010. An uncorrelated relaxed‐clock analysis suggests an earlier origin for flowering plants. Proceedings of the National Academy of Sciences, USA 107: 5897 – 5902.en_US
dc.identifier.citedreferenceSmith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. American Journal of Botany 98: 404 – 414.en_US
dc.identifier.citedreferenceSmith SA, O'Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 – 2690.en_US
dc.identifier.citedreferenceSoltis DE, Albert VA, Leebens‐Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96: 336 – 348.en_US
dc.identifier.citedreferenceSoltis DE, Segovia‐Salcedo MC, Jordon‐Thaden I, Majure L, Miles NM, Mavrodiev EV, Mei W, Cortez MB, Soltis PS, Gitzendanner MA. 2014a. Are polyploids really evolutionary dead‐ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytologist 202: 1105 – 1117.en_US
dc.identifier.citedreferenceSoltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio‐Rodriguez NF, Walker JB, Moore MJ, Carlsward BS et al. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98: 704 – 730.en_US
dc.identifier.citedreferenceSoltis PS, Soltis DE, Chase MW, Endress P, Crane PR. 2004. The diversification of flowering plants. In: Cracraft J, Donoghue MJ, eds. The tree of life. New York, NY, USA: Oxford University Press, 154 – 167.en_US
dc.identifier.citedreferenceSoltis DE, Visger CJ, Soltis PS. 2014b. The polyploidy revolution then..and now: Stebbins revisited. American Journal of Botany 101: 1057 – 1078.en_US
dc.identifier.citedreferenceSoltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014c. Polyploidy and novelty: Gottlieb's legacy. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 369: 20130351.en_US
dc.identifier.citedreferenceStadler T. 2011. Inferring speciation and extinction processes from extant species data. Proceedings of the National Academy of Sciences, USA 108: 16145 – 16146.en_US
dc.identifier.citedreferenceStadler T, Rabosky DL, Ricklefs RE, Bokma F. 2014. On age and species richness of higher taxa. The American Naturalist 184: 447 – 455.en_US
dc.identifier.citedreferenceStamatakis A. 2006. RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688 – 2690.en_US
dc.identifier.citedreferenceStebbins GL. 1947. Types of polyploids; their classification and significance. Advances in Genetics 1: 403 – 429.en_US
dc.identifier.citedreferenceStebbins GL. 1950. Variation and evolution in plants. New York, NY, USA: Columbia University Press.en_US
dc.identifier.citedreferenceStebbins GL. 1970. Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annual Review of Ecology and Systematics 1: 307 – 326.en_US
dc.identifier.citedreferenceStebbins GL. 1971. Adaptive radiation of reproductive characteristics in angiosperms, II: seeds and seedlings. Annual Review of Ecology and Systematics 2: 237 – 260.en_US
dc.identifier.citedreferenceStebbins GL. 1974. Flowering plants: evolution above the species level. Cambridge, MA, USA: Harvard University Press.en_US
dc.identifier.citedreferenceStebbins GL. 1981. Why are there so many species of flowering plants? BioScience 31: 573 – 577.en_US
dc.identifier.citedreferenceStevens PF. ( 2001 onwards). Angiosperm phylogeny website. Version 12, July 2012 [and more or less continuously updated since]. [WWW document] URL http://www.mobot.org/MOBOT/research/APweb/ [accessed 21 July 2014].en_US
dc.identifier.citedreferenceThe Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105 – 121.en_US
dc.identifier.citedreferenceThe Plant List. 2010. Version 1.0. [WWW document] URL http://www.theplantlist.org/1/ [accessed 23 April 2012].en_US
dc.identifier.citedreferenceVamosi JC, Vamosi SM. 2011. Factors influencing diversification in angiosperms: at the crossroads of intrinsic and extrinsic traits. American Journal of Botany 98: 460 – 471.en_US
dc.identifier.citedreferenceVan de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K. 2009. The flowering world: a tale of duplications. Trends in Plant Science 14: 680 – 688.en_US
dc.identifier.citedreferenceVan de Peer Y, Maere S, Meyer A. 2010. 2R or not 2R is not the question anymore. Nature Reviews Genetics 11: 166.en_US
dc.identifier.citedreferenceVanneste K, Baele G, Maere S, Van de Peer Y. 2014. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous‐Paleogene boundary. Genome Research 24: 1334 – 1347.en_US
dc.identifier.citedreferenceWilf P, Johnson KR. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30: 347 – 368.en_US
dc.identifier.citedreferenceZanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O'Meara BC, Moles AT, Reich PB et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89 – 92.en_US
dc.identifier.citedreferenceZhan SH, Glick L, Tsigenopoulos CS, Otto SP, Mayrose I. 2014. Comparative analysis reveals that polyploidy does not decelerate diversification in fish. Journal of Evolutionary Biology 27: 391 – 403.en_US
dc.identifier.citedreferenceAlfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, USA 106: 13410 – 13414.en_US
dc.identifier.citedreferenceAlroy J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences, USA 105: 11536 – 11542.en_US
dc.identifier.citedreferenceAlroy J. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53: 1211 – 1235.en_US
dc.identifier.citedreferenceAmborella Genome Project. 2013. The Amborella genome and the evolution of flowering plants. Science 342: 1241089.en_US
dc.identifier.citedreferenceArnold ML. 1992. Natural hybridization as an evolutionary process. Annual Review of Ecology and Systematics 23: 237 – 261.en_US
dc.identifier.citedreferenceAugusto L, Davies TJ, Delzon S, De Schrijver A. 2014. The enigma of the rise of angiosperms: can we untie the knot? Ecology Letters 17: 1326 – 1338.en_US
dc.identifier.citedreferenceBarker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH. 2008. Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Molecular Biology and Evolution 25: 2445 – 2455.en_US
dc.identifier.citedreferenceBarker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biology and Evolution 1: 391 – 399.en_US
dc.identifier.citedreferenceBeaulieu JM, Tank DC, Donoghue MJ. 2013. A Southern Hemisphere origin for campanulid angiosperms, with traces of the break‐up of Gondwana. BMC Evolutionary Biology 13: 80.en_US
dc.identifier.citedreferenceBell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re‐revisited. American Journal of Botany 97: 1296 – 1303.en_US
dc.identifier.citedreferenceBerendse F, Scheffer M. 2009. The angiosperm radiation revisited, an ecological explanation for Darwin's ‘abominable mystery’. Ecology Letters 12: 865 – 872.en_US
dc.identifier.citedreferenceBowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433 – 438.en_US
dc.identifier.citedreferenceBremer K, Friis EM, Bremer B. 2004. Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification. Systematic Biology 53: 496 – 505.en_US
dc.identifier.citedreferenceBremer K, Gustafsson MH. 1997. East Gondwana ancestry of the sunflower alliance of families. Proceedings of the National Academy of Sciences, USA 94: 9188 – 9190.en_US
dc.identifier.citedreferenceBrodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters 13: 175 – 183.en_US
dc.identifier.citedreferenceBurnham K, Anderson DR. 2002. Model selection and multimodel inference: a practical information‐theoretic approach. New York, NY, USA: Springer.en_US
dc.identifier.citedreferenceCantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG, Soltis DE, Soltis PS, Donoghue MJ. 2007. Towards a phylogenetic nomenclature of Tracheophyta. Taxon 56: 822 – 846.en_US
dc.identifier.citedreferenceClarke JT, Warnock RCM, Donoghue PCJ. 2011. Establishing a time‐scale for plant evolution. New Phytologist 192: 266 – 301.en_US
dc.identifier.citedreferenceClausen J, Keck DD, Hiesey WM. 1945. Experimental studies on the nature of species. II. Wasihngton, DC, USA: Carnegie Institution of Washington.en_US
dc.identifier.citedreferenceCrane PR, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. Nature 374: 27 – 33.en_US
dc.identifier.citedreferenceCui L, Wall PK, Leebens‐Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A et al. 2006. Widespread genome duplications throughout the history of flowering plants. Genome Research 16: 738 – 749.en_US
dc.identifier.citedreferenceCusimano N, Renner SS. 2010. Slowdowns in diversification rates from real phylogenies may not be real. Systematic Biology 59: 458 – 464.en_US
dc.identifier.citedreferenceDarwin C. 1903. Letter 395. To J.D. Hooker. In: Darwin F, Seward AC, eds. More letters of Charles Darwin, vol II. London, UK: John Murray, 20 – 22.en_US
dc.identifier.citedreferenceDavies T, Barraclough T. 2004. Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences, USA 101: 1904 – 1909.en_US
dc.identifier.citedreferenceDilcher DL. 2001. Paleobotany: some aspects of non‐flowering and flowering plant evolution. Taxon 50: 697 – 711.en_US
dc.identifier.citedreferenceFeild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A, Upchurch GRJ, Gomez B, Mohr BAR, Coiffard C, Kvacek J et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. Proceedings of the National Academy of Sciences, USA 108: 8363 – 8366.en_US
dc.identifier.citedreferenceFiz‐Palacios O, Schneider H, Heinrichs J, Savolainen V. 2011. Diversification of land plants: insights from a family‐level phylogenetic analysis. BMC Evolutionary Biology 11: 341.en_US
dc.identifier.citedreferenceGorelick R. 2001. Did insect pollination cause increased seed plant diversity? Biological Journal of the Linnean Society 74: 407 – 427.en_US
dc.identifier.citedreferenceHaudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly‐Lopez Z, Steffen JG, Hazzouri KM et al. 2013. An atlas of over 90 000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature Genetics 45: 891 – 898.en_US
dc.identifier.citedreferenceJiao Y, Leebens‐Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ et al. 2012. A genome triplication associated with early diversification of the core eudicots. Genome Biology 13: R3.en_US
dc.identifier.citedreferenceJiao Y, Li J, Tang H, Paterson AH. 2014. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26: 2792 – 2802.en_US
dc.identifier.citedreferenceJiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97 – 100.en_US
dc.identifier.citedreferenceJoppa LN, Roberts DL, Pimm SL. 2011. How many species of flowering plants are there? Proceedings of the Royal Society B: Biological Sciences 278: 554 – 559.en_US
dc.identifier.citedreferenceJudd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. 2007. Plant systematics: a phylogenetic approach. Sunderland, MA, USA: Sinauer Associates.en_US
dc.identifier.citedreferenceKagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke WE, Edger PP, Links MG et al. 2014. Polyploid evolution of the Brassicaceae during the Cenozoic Era. Plant Cell 26: 2777 – 2791.en_US
dc.identifier.citedreferenceKim KJ. 2005. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Molecular Biology and Evolution 22: 1783 – 1792.en_US
dc.identifier.citedreferenceLabandeira CC. 2010. The pollination of mid Mesozoic seed plants and the early history of long‐proboscid insects. Annals of the Missouri Botanical Garden 97: 469 – 513.en_US
dc.identifier.citedreferenceLevin DA. 1983. Polyploidy and novelty in flowering plants. The American Naturalist 122: 1 – 25.en_US
dc.identifier.citedreferenceLidgard S, Crane PR. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16: 77 – 93.en_US
dc.identifier.citedreferenceMagallón S, Castillo A. 2009. Angiosperm diversification through time. American Journal of Botany 96: 349 – 365.en_US
dc.identifier.citedreferenceMagallón S, Sanderson MJ. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 1762 – 1780.en_US
dc.identifier.citedreferenceMay MR, Moore BR. 2014. How well can we detect shifts in rates of lineage diversification? A simulation study of sequential AIC methods. bioRxiv. doi: 10.1101/011452.en_US
dc.identifier.citedreferenceMayrose I, Zhan SH, Rothfels CJ, Magnuson‐Ford K, Barker MS, Rieseberg LH, Otto SP. 2011. Recently formed polyploid plants diversify at lower rates. Science 333: 1257.en_US
dc.identifier.citedreferenceMcElwain JC, Punyasena SW. 2007. Mass extinction events and the plant fossil record. Trends in Ecology & Evolution 22: 548 – 557.en_US
dc.identifier.citedreferenceMooers AO, Heard SB. 1997. Inferring evolutionary process from phylogenetic tree shape. Quarterly Review of Biology 72: 31 – 54.en_US
dc.identifier.citedreferenceMorlon H. 2014. Phylogenetic approaches for studying diversification. Ecology Letters 17: 508 – 525.en_US
dc.identifier.citedreferenceMorlon H, Parsons TL, Plotkin JB. 2011. Reconciling molecular phylogenies with the fossil record. Proceedings of the National Academy of Sciences, USA 108: 16327 – 16332.en_US
dc.identifier.citedreferenceMorlon H, Potts MD, Plotkin JB. 2010. Inferring the dynamics of diversification: a coalescent approach (Harvey PH, ed.). PLoS Biology 8: e1000493.en_US
dc.identifier.citedreferenceMundry R, Nunn CL. 2009. Stepwise model fitting and statistical inference: turning noise into signal pollution. The American Naturalist 173: 119 – 123.en_US
dc.identifier.citedreferenceOtt M, Zola J, Stamatakis A, Aluru S. 2007. Large‐scale maximum likelihood‐based phylogenetic analysis on the IBM BlueGene/L. Proceedings of the 2007 ACM/IEEE Conference on Supercomputing 4, 1 – 11.en_US
dc.identifier.citedreferencePabón‐Mora N, Hidalgo O, Gleissberg S, Litt A. 2013. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. Frontiers in Plant Science 4: 1 – 14.en_US
dc.identifier.citedreferencePaterson AH, Wang X, Li J, Tang H. 2012. Ancient and recent polyploidy in monocots. In: Soltis DE, Soltis PS, eds. Polyploidy and genome evolution. Heidelberg, Germany: Springer, 93 – 108.en_US
dc.identifier.citedreferencePennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30: 2216 – 2218.en_US
dc.identifier.citedreferencePennell MW, Harmon LJ. 2013. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Sciences 1289: 90 – 105.en_US
dc.identifier.citedreferencePhillimore AB, Price TD. 2008. Density‐dependent cladogenesis in birds. PLoS Biology 6: e71.en_US
dc.identifier.citedreferencePybus OG, Harvey PH. 2000. Testing macro‐evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society B‐Biological Sciences 267: 2267 – 2272.en_US
dc.identifier.citedreferencePyron RA, Burbrink FT. 2012. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 66: 163 – 178.en_US
dc.identifier.citedreferencePyron RA, Burbrink FT. 2013. Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology & Evolution 28: 729 – 736.en_US
dc.identifier.citedreferenceQuental TB, Marshall CR. 2010. Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology & Evolution 25: 434 – 441.en_US
dc.identifier.citedreferenceRabosky DL. 2006. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics Online 2: 273 – 276.en_US
dc.identifier.citedreferenceRabosky DL. 2009a. Ecological limits on clade diversification in higher taxa. The American Naturalist 173: 662 – 674.en_US
dc.identifier.citedreferenceRabosky DL. 2009b. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters 12: 735 – 743.en_US
dc.identifier.citedreferenceRabosky DL. 2010. Primary controls on species richness in higher taxa. Systematic Biology 59: 634 – 645.en_US
dc.identifier.citedreferenceRabosky DL. 2012. Testing the time‐for‐speciation effect in the assembly of regional biotas. Methods in Ecology and Evolution 3: 224 – 233.en_US
dc.identifier.citedreferenceRabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity‐dependence on phylogenetic trees. PLoS ONE 9: e89543.en_US
dc.identifier.citedreferenceRabosky DL, Adams DC. 2012. Rates of morphological evolution are correlated with species richness in salamanders. Evolution 66: 1807 – 1818.en_US
dc.identifier.citedreferenceRabosky DL, Donnellan SC, Talaba AL, Lovette IJ. 2007. Exceptional among‐lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade. Proceedings of the Royal Society B: Biological Sciences 274: 2915 – 2923.en_US
dc.identifier.citedreferenceRabosky DL, Glor RE. 2010. Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proceedings of the National Academy of Sciences, USA 107: 22178 – 22183.en_US
dc.identifier.citedreferenceRabosky DL, Lovette IJ. 2008. Density‐dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences 275: 2363 – 2371.en_US
dc.identifier.citedreferenceRabosky DL, Slater GJ, Alfaro ME. 2012. Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biology 10: e1001381.en_US
dc.identifier.citedreferenceRicklefs RE. 2006. Time, species, and the generation of trait variance in clades. Systematic Biology 55: 151 – 159.en_US
dc.identifier.citedreferenceRicklefs RE, Losos JB, Townsend TM. 2007. Evolutionary diversification of clades of squamate reptiles. Journal of Evolutionary Biology 20: 1751 – 1762.en_US
dc.identifier.citedreferenceSanderson MJ, Donoghue MJ. 1994. Shifts in diversification rate with the origin of angiosperms. Science 264: 1590 – 1593.en_US
dc.identifier.citedreferenceSchranz ME, Edger PP, Pires JC, van Dam NM, Wheat CW. 2011. Comparative genomics in the Brassicales: ancient genome duplications, glucosinolate diversification and Pierinae herbivore radiation. In: Edwards D, Batley J, Parkin I, Kole C, eds. Genetics, genomics and breeding of crop plants. Enfield, NH, USA: Science Publishers, 206 – 218.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.