Show simple item record

Robust and Powerful Affected Sibpair Test for Rare Variant Association

dc.contributor.authorLin, Keng‐hanen_US
dc.contributor.authorZöllner, Sebastianen_US
dc.date.accessioned2015-07-01T20:56:03Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationLin, Keng‐han ; Zöllner, Sebastian (2015). "Robust and Powerful Affected Sibpair Test for Rare Variant Association." Genetic Epidemiology 39(5): 325-333.en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111926
dc.description.abstractAdvances in DNA sequencing technology facilitate investigating the impact of rare variants on complex diseases. However, using a conventional case‐control design, large samples are needed to capture enough rare variants to achieve sufficient power for testing the association between suspected loci and complex diseases. In such large samples, population stratification may easily cause spurious signals. One approach to overcome stratification is to use a family‐based design. For rare variants, this strategy is especially appropriate, as power can be increased considerably by analyzing cases with affected relatives. We propose a novel framework for association testing in affected sibpairs by comparing the allele count of rare variants on chromosome regions shared identical by descent to the allele count of rare variants on nonshared chromosome regions, referred to as test for rare variant association with family‐based internal control (TRAFIC). This design is generally robust to population stratification as cases and controls are matched within each sibpair. We evaluate the power analytically using general model for effect size of rare variants. For the same number of genotyped people, TRAFIC shows superior power over the conventional case‐control study for variants with summed risk allele frequency f<0.05; this power advantage is even more substantial when considering allelic heterogeneity. For complex models of gene‐gene interaction, this power advantage depends on the direction of interaction and overall heritability. In sum, we introduce a new method for analyzing rare variants in affected sibpairs that is robust to population stratification, and provide freely available software.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherdichotomous traitsen_US
dc.subject.otherassociation testen_US
dc.subject.othersequencingen_US
dc.subject.otherfamily studiesen_US
dc.subject.otherrare variantsen_US
dc.titleRobust and Powerful Affected Sibpair Test for Rare Variant Associationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111926/1/gepi21903.pdf
dc.identifier.doi10.1002/gepi.21903en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceRisch N. 2001. Implications of multilocus inheritance for gene‐disease association studies. Theor Popul Biol 60: 215 – 220.en_US
dc.identifier.citedreferenceIonita‐Laza I, Ottman R. 2011. Study designs for identification of rare disease variants in complex diseases: the utility of family‐based designs. Genetics 189: 1061 – 1068.en_US
dc.identifier.citedreferenceKeith JM, McRae A, Duffy D, Mengersen K, Visscher PM. 2008. Calculation of IBD probabilities with dense SNP or sequence data. Genet Epidemiol 32: 513 – 519.en_US
dc.identifier.citedreferenceLaird NM, Lange C. 2006. Family‐based designs in the age of large‐scale gene‐association studies. Nat Rev Genet 7: 385 – 394.en_US
dc.identifier.citedreferenceLi B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83: 311 – 321.en_US
dc.identifier.citedreferenceLiu Q, Nicolae DL, Chen LS. 2013. Marbled inflation from population structure in gene‐based association studies with rare variants. Genet Epidemiol 37: 286 – 292.en_US
dc.identifier.citedreferenceManolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009. Finding the missing heritability of complex diseases. Nature 461: 747 – 753.en_US
dc.identifier.citedreferenceMathieson I, McVean G. 2012. Differential confounding of rare and common variants in spatially structured populations. Nat Genet 44: 243 – 246.en_US
dc.identifier.citedreferenceNelson MR, Wegmann D, Ehm MG, Kessner D, St Jean P, Verzilli C, Shen J, Tang Z, Bacanu SA, Fraser D, et al. 2012. An abundance of rare functional variants in 202 drug target genes sequenced in 14002 people. Science 337: 100 – 104.en_US
dc.identifier.citedreferenceNg SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, et al. 2010. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42: 30 – 35.en_US
dc.identifier.citedreferenceNg SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, et al. 2009. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461: 272 – 276.en_US
dc.identifier.citedreferencePeng B, Li B, Han Y, Amos CI. 2010. Power analysis for case‐control association studies of samples with known family histories. Hum Genet 127: 699 – 704.en_US
dc.identifier.citedreferencePrice AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. Principal components analysis corrects for stratification in genome‐wide association studies. Nat Genet 38: 904 – 909.en_US
dc.identifier.citedreferencePrice AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR. 2010. Pooled association tests for rare variants in exon‐resequencing studies. Am J Hum Genet 86: 832 – 838.en_US
dc.identifier.citedreferenceRao DC, Province MA, Leppert MF, Oberman Al, Heiss G, Ellison RC, Arnett DK, Eckfeldt JH, Schwander K, Mockrin SC, Hunt SC. 2003. A genome‐wide affected sibpair linkage analysis of hypertension: the HyperGEN network. Am J Hypertens 16: 148 – 150.en_US
dc.identifier.citedreferenceRisch N. 1990. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46: 222 – 228.en_US
dc.identifier.citedreferenceSchaffner SF, Foo C, Gabriel S, Reich D, Daly MJ, Altshuler D. 2005. Calibrating a coalescent simulation of human genome sequence variation. Genome Res 15: 1576 – 1583.en_US
dc.identifier.citedreferenceSchifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SL, Peyser PA, Lin X. 2012. SNP set association analysis for familial data. Genet Epidemiol 36: 797 – 810.en_US
dc.identifier.citedreferenceShugart YY, Zhu Y, Guo W, Xiong M. 2012. Weighted pedigree‐based statistics for testing the association of rare variants. BMC Genomics 13: 667.en_US
dc.identifier.citedreferenceWu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare‐variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89: 82 – 93.en_US
dc.identifier.citedreferenceZawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zöllner S. 2014. Extending rare‐variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87: 604 – 617.en_US
dc.identifier.citedreferenceZawistowski M, Reppell M, Wegmann M, St. Jean PL, Ehm MG, Nelson MR, Novembre J, Zöllner S. 2014. Sources of population stratification in gene-based rare variant tests identified by the joint site frequency spectrum. Eur J Hum Genet 22: 1137 – 1144.en_US
dc.identifier.citedreferenceZöllner S. 2012. Sampling strategies for rare variant tests in case‐control studies. Eur J Hum Genet 20: 1085 – 1091.en_US
dc.identifier.citedreferenceChen H, Meigs JB, Dupuis J. 2013. Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37: 196 – 204.en_US
dc.identifier.citedreferenceCooper GM, Shendure J. 2011. Needles in stacks of needles: finding disease‐causal variants in a wealth of genomic data. Nat Rev Genet 12: 628 – 640.en_US
dc.identifier.citedreferenceDe G, Yip W, Ionita‐Laza I, Laird N. 2013. Rare variant analysis for family‐based design. PloS One 8: e48495.en_US
dc.identifier.citedreferenceDevlin B, Roeder K. 1999. Genomic control for association studies. Biometrics 55: 997 – 1004.en_US
dc.identifier.citedreferenceFang S, Sha Q, Zhang S. 2012. Two adaptive weighting methods to test for rare variant associations in family‐based designs. Genet Epidemiol 36: 499 – 507.en_US
dc.identifier.citedreferenceFingerlin TE, Boehnke M, Abecasis GR. 2004. Increasing the power and efficiency of disease‐marker case‐control association studies through use of allele‐sharing information. Am J Hum Genet 74: 432 – 443.en_US
dc.identifier.citedreferenceGuan W, Boehnke M, Pluzhnikov A, Cox NJ, Scott LJ. 2012. Identifying plausible genetic models based on association and linkage results: application to type 2 diabetes. Genet Epidemiol 36: 820 – 828.en_US
dc.identifier.citedreferenceGuo W, Shugart YY. 2012. Detecting rare variants for quantitative traits using nuclear families. Hum Hered 73: 148 – 158.en_US
dc.identifier.citedreferenceHelbig I, Hodge SE, Ottman R. 2013. Familial cosegregation of rare genetic variants with disease in complex disorders. Eur J Hum Genet 21: 444 – 450.en_US
dc.identifier.citedreferenceHowson JMM, Walker NM, Clayton D, Todd JA. 2009. Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA‐B and HLA‐A. Diabetes Obes Metab 11 ( Suppl 1 ): 31 – 45.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.