Show simple item record

Chromosomal Imbalances in Patients with Congenital Cardiac Defects: A Meta‐analysis Reveals Novel Potential Critical Regions Involved in Heart Development

dc.contributor.authorThorsson, Thoren_US
dc.contributor.authorRussell, William W.en_US
dc.contributor.authorEl‐kashlan, Nouren_US
dc.contributor.authorSoemedi, Rachelen_US
dc.contributor.authorLevine, Jonathanen_US
dc.contributor.authorGeisler, Sarah B.en_US
dc.contributor.authorAckley, Todden_US
dc.contributor.authorTomita‐mitchell, Aoyen_US
dc.contributor.authorRosenfeld, Jill A.en_US
dc.contributor.authorTöpf, Anaen_US
dc.contributor.authorTayeh, Marwanen_US
dc.contributor.authorGoodship, Judithen_US
dc.contributor.authorInnis, Jeffrey W.en_US
dc.contributor.authorKeavney, Bernarden_US
dc.contributor.authorRussell, Mark W.en_US
dc.date.accessioned2015-07-01T20:56:11Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationThorsson, Thor; Russell, William W.; El‐kashlan, Nour ; Soemedi, Rachel; Levine, Jonathan; Geisler, Sarah B.; Ackley, Todd; Tomita‐mitchell, Aoy ; Rosenfeld, Jill A.; Töpf, Ana ; Tayeh, Marwan; Goodship, Judith; Innis, Jeffrey W.; Keavney, Bernard; Russell, Mark W. (2015). "Chromosomal Imbalances in Patients with Congenital Cardiac Defects: A Metaâ analysis Reveals Novel Potential Critical Regions Involved in Heart Development." Congenital Heart Disease (3): 193-208.en_US
dc.identifier.issn1747-079Xen_US
dc.identifier.issn1747-0803en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111936
dc.description.abstractObjectiveCongenital cardiac defects represent the most common group of birth defects, affecting an estimated six per 1000 births. Genetic characterization of patients and families with cardiac defects has identified a number of genes required for heart development. Yet, despite the rapid pace of these advances, mutations affecting known genes still account for only a small fraction of congenital heart defects suggesting that many more genes and developmental mechanisms remain to be identified.DesignIn this study, we reviewed 1694 described cases of patients with cardiac defects who were determined to have a significant chromosomal imbalance (a deletion or duplication). The cases were collected from publicly available databases (DECIPHER, ISCA, and CHDWiki) and from recent publications. An additional 68 nonredundant cases were included from the University of Michigan. Cases with multiple chromosomal or whole chromosome defects (trisomy 13, 18, 21) were excluded, and cases with overlapping deletions and/or insertions were grouped to identify regions potentially involved in heart development.ResultsSeventy‐nine chromosomal regions were identified in which 5 or more patients had overlapping imbalances. Regions of overlap were used to determine minimal critical domains most likely to contain genes or regulatory elements involved in heart development. This approach was used to refine the critical regions responsible for cardiac defects associated with chromosomal imbalances involving 1q24.2, 2q31.1, 15q26.3, and 22q11.2.ConclusionsThe pattern of chromosomal imbalances in patients with congenital cardiac defects suggests that many loci may be involved in normal heart development, some with very strong and direct effects and others with less direct effects. Chromosomal duplication/deletion mapping will provide an important roadmap for genome‐wide sequencing and genetic mapping strategies to identify novel genes critical for heart development.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCongenital Heart Defectsen_US
dc.subject.otherHeart Developmenten_US
dc.subject.otherChromosomal Imbalanceen_US
dc.titleChromosomal Imbalances in Patients with Congenital Cardiac Defects: A Meta‐analysis Reveals Novel Potential Critical Regions Involved in Heart Developmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111936/1/chd12179.pdf
dc.identifier.doi10.1111/chd.12179en_US
dc.identifier.sourceCongenital Heart Diseaseen_US
dc.identifier.citedreferenceAdeyinka A, Stockero KJ, Flynn HC, Lorentz CP, Ketterling RP, Jalal SM. Familial 22q11.2 deletions in DiGeorge/velocardiofacial syndrome are predominantly smaller than the commonly observed 3Mb. Genet Med. 2004; 6: 517 – 520.en_US
dc.identifier.citedreferenceGarg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005; 437: 270 – 274.en_US
dc.identifier.citedreferenceHsieh JJ, Zhou S, Chen L, Young DB, Hayward SD. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A. 1999; 96: 23 – 28.en_US
dc.identifier.citedreferencevan Loo PF, Mahtab EA, Wisse LJ, et al. Transcription factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol. 2007; 27: 8571 – 8582.en_US
dc.identifier.citedreferenceSubramanian SV, Nadal‐Ginard B. Early expression of the different isoforms of the myocyte enhancer factor‐2 (MEF2) protein in myogenic as well as non‐myogenic cell lineages during mouse embryogenesis. Mech Dev. 1996; 57: 103 – 112.en_US
dc.identifier.citedreferenceYagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003; 362: 1366 – 1373.en_US
dc.identifier.citedreferenceLindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001; 410: 97 – 101.en_US
dc.identifier.citedreferenceMerscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo‐cardio‐facial/DiGeorge syndrome. Cell. 2001; 104: 619 – 629.en_US
dc.identifier.citedreferenceJerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T‐box gene, Tbx1. Nat Genet. 2001; 27: 286 – 291.en_US
dc.identifier.citedreferenceMomma K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am J Cardiol. 2010; 105: 1617 – 1624.en_US
dc.identifier.citedreferenceBreckpot J, Thienpont B, Bauters M, et al. Congenital heart defects in a novel recurrent 22q11.2 deletion harboring the genes CRKL and MAPK1. Am J Med Genet A. 2012; 158A: 574 – 580.en_US
dc.identifier.citedreferenceShaikh TH, Kurahashi H, Saitta SC, et al. Chromosome 22‐specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000; 9: 489 – 501.en_US
dc.identifier.citedreferenceSaitta SC, Harris SE, Gaeth AP, et al. Aberrant interchromosomal exchanges are the predominant cause of the 22q11.2 deletion. Hum Mol Genet. 2004; 13: 417 – 428.en_US
dc.identifier.citedreferenceMorrow B, Goldberg R, Carlson C, et al. Molecular definition of the 22q11 deletions in velo‐cardio‐facial syndrome. Am J Hum Genet. 1995; 56: 1391 – 1403.en_US
dc.identifier.citedreferenceRauch A, Zink S, Zweier C, et al. Systematic assessment of atypical deletions reveals genotype‐phenotype correlation in 22q11.2. J Med Genet. 2005; 42: 871 – 876.en_US
dc.identifier.citedreferenceGuris DL, Duester G, Papaioannou VE, Imamoto A. Dose‐dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev Cell. 2006; 10: 81 – 92.en_US
dc.identifier.citedreferenceBurkardt DD, Rosenfeld JA, Helgeson ML, et al. Distinctive phenotype in 9 patients with deletion of chromosome 1q24‐q25. Am J Med Genet A. 2011; 155A: 1336 – 1351.en_US
dc.identifier.citedreferenceHennies HC, Kornak U, Zhang H, et al. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab‐6 interacting golgin. Nat Genet. 2008; 40: 1410 – 1412.en_US
dc.identifier.citedreferenceSergi C, Kamnasaran D. PRRX1 is mutated in a fetus with agnathia‐otocephaly. Clin Genet. 2011; 79: 293 – 295.en_US
dc.identifier.citedreferenceMartin JF, Bradley A, Olson EN. The paired‐like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 1995; 9: 1237 – 1249.en_US
dc.identifier.citedreferenceLiu J, Luo XJ, Xiong AW, et al. MicroRNA‐214 promotes myogenic differentiation by facilitating exit from mitosis via down‐regulation of proto‐oncogene N‐ras. J Biol Chem. 2010; 285: 26599 – 26607.en_US
dc.identifier.citedreferenceCho TJ, Kim OH, Choi IH, et al. A dominant mesomelic dysplasia associated with a 1.0‐Mb microduplication of HOXD gene cluster at 2q31.1. J Med Genet. 2010; 47: 638 – 639.en_US
dc.identifier.citedreferenceTheisen A, Rosenfeld JA, Shane K, et al. Refinement of the region for split hand/foot malformation 5 on 2q31.1. Mol Syndromol. 2010; 1: 262 – 271.en_US
dc.identifier.citedreferenceGotoh I, Adachi M, Nishida E. Identification and characterization of a novel MAP kinase kinase kinase, MLTK. J Biol Chem. 2001; 276: 4276 – 4286.en_US
dc.identifier.citedreferenceRump P, Dijkhuizen T, Sikkema‐Raddatz B, et al. Drayer's syndrome of mental retardation, microcephaly, short stature and absent phalanges is caused by a recurrent deletion of chromosome 15(q26.2→qter). Clin Genet. 2008; 74: 455 – 462.en_US
dc.identifier.citedreferenceTonnies H, Schulze I, Hennies H, Neumann LM, Keitzer R, Neitzel H. De novo terminal deletion of chromosome 15q26.1 characterised by comparative genomic hybridisation and FISH with locus specific probes. J Med Genet. 2001; 38: 617 – 621.en_US
dc.identifier.citedreferenceMorales J, Al‐Sharif L, Khalil DS, et al. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am J Hum Genet. 2009; 85: 558 – 568.en_US
dc.identifier.citedreferenceHinton RB, Martin LJ, Rame‐Gowda S, Tabangin ME, Cripe LH, Benson DW. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J Am Coll Cardiol. 2009; 53: 1065 – 1071.en_US
dc.identifier.citedreferenceVitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet. 2002; 11: 915 – 922.en_US
dc.identifier.citedreferenceFagerberg CR, Graakjaer J, Heinl UD, et al. Heart defects and other features of the 22q11 distal deletion syndrome. Eur J Med Genet. 2013; 56: 98 – 107.en_US
dc.identifier.citedreferenceGuris DL, Fantes J, Tara D, Druker BJ, Imamoto A. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet. 2001; 27: 293 – 298.en_US
dc.identifier.citedreferenceOhye RG, Sleeper LA, Mahony L, et al. Comparison of shunt types in the Norwood procedure for single‐ventricle lesions. N Engl J Med. 2010; 362: 1980 – 1992.en_US
dc.identifier.citedreferencePetit CJ. Staged single‐ventricle palliation in 2011: outcomes and expectations. Congenit Heart Dis. 2011; 6: 406 – 416.en_US
dc.identifier.citedreferencePierpont ME, Basson CT, Benson DW Jr, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007; 115: 3015 – 3038.en_US
dc.identifier.citedreferenceMcCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol. 2012; 100: 253 – 277.en_US
dc.identifier.citedreferenceWolf M, Basson CT. The molecular genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol. 2010; 25: 192 – 197.en_US
dc.identifier.citedreferenceMillan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology. 2013; 68: 2 – 82.en_US
dc.identifier.citedreferenceZaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone‐modifying genes in congenital heart disease. Nature. 2013; 498: 220 – 223.en_US
dc.identifier.citedreferenceFerencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry LW. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr. 1989; 114: 79 – 86.en_US
dc.identifier.citedreferenceFirth HV, Richards SM, Bevan AP, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensemble resources. Am J Hum Genet. 2009; 84: 524 – 533.en_US
dc.identifier.citedreferenceBarriot R, Breckpot J, Thienpont B, et al. Collaboratively charting the gene‐to‐phenotype network of human congenital heart defects. Genome Med. 2010; 2: 16.en_US
dc.identifier.citedreferenceGreenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009; 41: 931 – 935.en_US
dc.identifier.citedreferenceTomita‐Mitchell A, Mahnke DK, Struble CA, et al. Human gene copy number spectra analysis in congenital heart malformations. Physiol Genomics. 2012; 44: 518 – 541.en_US
dc.identifier.citedreferenceCooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011; 43: 838 – 846.en_US
dc.identifier.citedreferenceSoemedi R, Wilson IJ, Bentham J, et al. Contribution of global rare copy‐number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012; 91: 489 – 501.en_US
dc.identifier.citedreferenceBaldwin EL, Lee JY, Blake DM, et al. Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet Med. 2008; 10: 415 – 429.en_US
dc.identifier.citedreferenceQuinonez SC, Hedera P, Barr M, et al. Maternal intrachromosomal insertional translocation leads to recurrent 1q21.3q23.3 deletion in two siblings. Am J Med Genet A. 2012; 158A: 2591 – 2601.en_US
dc.identifier.citedreferenceThienpont B, Zhang L, Postma AV, et al. Haploinsufficiency of TAB2 causes congenital heart defects in humans. Am J Hum Genet. 2010; 86: 839 – 849.en_US
dc.identifier.citedreferenceBassett AS, Chow EW, Husted J, et al. Clinical features of 78 adults with 22q11 Deletion Syndrome. Am J Med Genet A. 2005; 138: 307 – 313.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.