Show simple item record

Expression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase of Toxoplasma differentiation is regulated by an intron retention mechanism

dc.contributor.authorLunghi, Matteoen_US
dc.contributor.authorGalizi, Robertoen_US
dc.contributor.authorMagini, Alessandroen_US
dc.contributor.authorCarruthers, Vern B.en_US
dc.contributor.authorDi Cristina, Manlioen_US
dc.date.accessioned2015-07-01T20:56:16Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationLunghi, Matteo; Galizi, Roberto; Magini, Alessandro; Carruthers, Vern B.; Di Cristina, Manlio (2015). "Expression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase of Toxoplasma differentiation is regulated by an intron retention mechanism." Molecular Microbiology (6): 1159-1175.en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111944
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAcademic press, Elsevieren_US
dc.titleExpression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase of Toxoplasma differentiation is regulated by an intron retention mechanismen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111944/1/mmi12999.pdf
dc.identifier.doi10.1111/mmi.12999en_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceSoldati, D., and Boothroyd, J.C. ( 1995 ) A selector of transcription initiation in the protozoan parasite Toxoplasma gondii. Mol Cell Biol 15: 87 – 93.en_US
dc.identifier.citedreferenceSalz, H.K., and Erickson, J.W. ( 2010 ) Sex determination in Drosophila: the view from the top. Fly (Austin) 4: 60 – 70.en_US
dc.identifier.citedreferenceMouveaux, T., Oria, G., Werkmeister, E., Slomianny, C., Fox, B.A., Bzik, D.J., and Tomavo, S. ( 2014 ) Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator. PLoS ONE 9: e105820.en_US
dc.identifier.citedreferenceQin, N., Zhang, S.P., Reitz, T.L., Mei, J.M., and Flores, C.M. ( 2005 ) Cloning, expression, and functional characterization of human cyclooxygenase‐1 splicing variants: evidence for intron 1 retention. J Pharmacol Exp Ther 315: 1298 – 1305.en_US
dc.identifier.citedreferenceRoos, D.S., Donald, R.G., Morrissette, N.S., and Moulton, A.L. ( 1994 ) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45: 27 – 63.en_US
dc.identifier.citedreferenceSeong, J.Y., Park, S., and Kim, K. ( 1999 ) Enhanced splicing of the first intron from the gonadotropin‐releasing hormone (GnRH) primary transcript is a prerequisite for mature GnRH messenger RNA: presence of GnRH neuron‐specific splicing factors. Mol Endocrinol 13: 1882 – 1895.en_US
dc.identifier.citedreferenceSoete, M., Fortier, B., Camus, D., and Dubremetz, J.F. ( 1993 ) Toxoplasma gondii: kinetics of bradyzoite‐tachyzoite interconversion in vitro. Exp Parasitol 76: 259 – 264.en_US
dc.identifier.citedreferenceCline, T.W. ( 1993 ) The Drosophila sex determination signal: how do flies count to two? Trends Genet 9: 385 – 390.en_US
dc.identifier.citedreferenceSun, S., Zhang, Z., Sinha, R., Karni, R., and Krainer, A.R. ( 2010 ) SF2/ASF autoregulation involves multiple layers of post‐transcriptional and translational control. Nat Struct Mol Biol 17: 306 – 312.en_US
dc.identifier.citedreferenceTomavo, S. ( 2001 ) The differential expression of multiple isoenzyme forms during stage conversion of Toxoplasma gondii: an adaptive developmental strategy. Int J Parasitol 31: 1023 – 1031.en_US
dc.identifier.citedreferenceWeiss, L.M., and Kim, K. ( 2000 ) The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci 5: D391 – D405.en_US
dc.identifier.citedreferenceWeiss, L.M., and Kim, K., ( 2013 ) Toxoplasma Gondii: The Model Apicomplexan – Perspectives and Methods. London, UK: Academic press, Elsevier. p. xxi.en_US
dc.identifier.citedreferenceWeiss, L.M., LaPlace, D., Tanowitz, H.B., and Wittner, M. ( 1992 ) Identification of Toxoplasma gondii bradyzoite‐specific monoclonal antibodies. J Infect Dis 166: 213 – 215.en_US
dc.identifier.citedreferenceWeiss, L.M., Laplace, D., Takvorian, P.M., Tanowitz, H.B., Cali, A., and Wittner, M. ( 1995 ) A cell culture system for study of the development of Toxoplasma gondii bradyzoites. J Eukaryot Microbiol 42: 150 – 157.en_US
dc.identifier.citedreferenceXu, Q., Walker, D., Bernardo, A., Brodbeck, J., Balestra, M.E., and Huang, Y. ( 2008 ) Intron‐3 retention/splicing controls neuronal expression of apolipoprotein E in the CNS. J Neurosci 28: 1452 – 1459.en_US
dc.identifier.citedreferenceYahiaoui, B., Dzierszinski, F., Bernigaud, A., Slomianny, C., Camus, D., and Tomavo, S. ( 1999 ) Isolation and characterization of a subtractive library enriched for developmentally regulated transcripts expressed during encystation of Toxoplasma gondii. Mol Biochem Parasitol 99: 223 – 235.en_US
dc.identifier.citedreferenceYang, S., and Parmley, S.F. ( 1995 ) A bradyzoite stage‐specifically expressed gene of Toxoplasma gondii encodes a polypeptide homologous to lactate dehydrogenase. Mol Biochem Parasitol 73: 291 – 294.en_US
dc.identifier.citedreferenceYang, S., and Parmley, S.F. ( 1997 ) Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184: 1 – 12.en_US
dc.identifier.citedreferenceYap, K., Lim, Z.Q., Khandelia, P., Friedman, B., and Makeyev, E.V. ( 2012 ) Coordinated regulation of neuronal mRNA steady‐state levels through developmentally controlled intron retention. Genes Dev 26: 1209 – 1223.en_US
dc.identifier.citedreferenceZhan, L.‐L. ( 2013 ) Recent advances of studies on alternative intron retention. Trends Evol Biol 5: 6.en_US
dc.identifier.citedreferenceAbaza, I., Coll, O., Patalano, S., and Gebauer, F. ( 2006 ) Drosophila UNR is required for translational repression of male‐specific lethal 2 mRNA during regulation of X‐chromosome dosage compensation. Genes Dev 20: 380 – 389.en_US
dc.identifier.citedreferenceAl‐Anouti, F., Tomavo, S., Parmley, S., and Ananvoranich, S. ( 2004 ) The expression of lactate dehydrogenase is important for the cell cycle of Toxoplasma gondii. J Biol Chem 279: 52300 – 52311.en_US
dc.identifier.citedreferenceAverbeck, N., Sunder, S., Sample, N., Wise, J.A., and Leatherwood, J. ( 2005 ) Negative control contributes to an extensive program of meiotic splicing in fission yeast. Mol Cell 18: 491 – 498.en_US
dc.identifier.citedreferenceBaker, B.S., Gorman, M., and Marin, I. ( 1994 ) Dosage compensation in Drosophila. Annu Rev Genet 28: 491 – 521.en_US
dc.identifier.citedreferenceBlack, M., Seeber, F., Soldati, D., Kim, K., and Boothroyd, J.C. ( 1995 ) Restriction enzyme‐mediated integration elevates transformation frequency and enables co‐transfection of Toxoplasma gondii. Mol Biochem Parasitol 74: 55 – 63.en_US
dc.identifier.citedreferenceBohne, W., Holpert, M., and Gross, U. ( 1999 ) Stage differentiation of the protozoan parasite Toxoplasma gondii. Immunobiology 201: 248 – 254.en_US
dc.identifier.citedreferenceBoothby, T.C., Zipper, R.S., van der Weele, C.M., and Wolniak, S.M. ( 2013 ) Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. Dev Cell 24: 517 – 529.en_US
dc.identifier.citedreferenceChang, D.D., and Sharp, P.A. ( 1989 ) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59: 789 – 795.en_US
dc.identifier.citedreferenceCornelissen, A.W., Overdulve, J.P., and Hoenderboom, J.M. ( 1981 ) Separation of Isospora ( Toxoplasma ) gondii cysts and cystozoites from mouse brain tissue by continuous density‐gradient centrifugation. Parasitology 83: 103 – 108.en_US
dc.identifier.citedreferenceCui, J.G., Kuroda, H., Chandrasekharan, N.V., Pelaez, R.P., Simmons, D.L., Bazan, N.G., and Lukiw, W.J. ( 2004 ) Cyclooxygenase‐3 gene expression in Alzheimer hippocampus and in stressed human neural cells. Neurochem Res 29: 1731 – 1737.en_US
dc.identifier.citedreferenceDenis, M.M., Tolley, N.D., Bunting, M., Schwertz, H., Jiang, H., Lindemann, S., et al. ( 2005 ) Escaping the nuclear confines: signal‐dependent pre‐mRNA splicing in anucleate platelets. Cell 122: 379 – 391.en_US
dc.identifier.citedreferenceDenton, H., Roberts, C.W., Alexander, J., Thong, K.W., and Coombs, G.H. ( 1996 ) Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. FEMS Microbiol Lett 137: 103 – 108.en_US
dc.identifier.citedreferenceDi Cristina, M., Marocco, D., Galizi, R., Proietti, C., Spaccapelo, R., and Crisanti, A. ( 2008 ) Temporal and spatial distribution of Toxoplasma gondii differentiation into bradyzoites and tissue cyst formation in vivo. Infect Immun 76: 3491 – 3501.en_US
dc.identifier.citedreferenceDubey, J.P., Lindsay, D.S., and Speer, C.A. ( 1998 ) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11: 267 – 299.en_US
dc.identifier.citedreferenceDzierszinski, F., Mortuaire, M., Dendouga, N., Popescu, O., and Tomavo, S. ( 2001 ) Differential expression of two plant‐like enolases with distinct enzymatic and antigenic properties during stage conversion of the protozoan parasite Toxoplasma gondii. J Mol Biol 309: 1017 – 1027.en_US
dc.identifier.citedreferenceFerguson, D.J., Parmley, S.F., and Tomavo, S. ( 2002 ) Evidence for nuclear localisation of two stage‐specific isoenzymes of enolase in Toxoplasma gondii correlates with active parasite replication. Int J Parasitol 32: 1399 – 1410.en_US
dc.identifier.citedreferenceFox, B.A., Falla, A., Rommereim, L.M., Tomita, T., Gigley, J.P., Mercier, C., et al. ( 2011 ) Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. Eukaryot Cell 10: 1193 – 1206.en_US
dc.identifier.citedreferenceGalizi, R., Spano, F., Giubilei, M.A., Capuccini, B., Magini, A., Urbanelli, L., et al. ( 2013 ) Evidence of tRNA cleavage in apicomplexan parasites: half‐tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei. Mol Biochem Parasitol 188: 99 – 108.en_US
dc.identifier.citedreferenceHett, A., and West, S. ( 2014 ) Inhibition of U4 snRNA in human cells causes the stable retention of polyadenylated pre‐mRNA in the nucleus. PLoS ONE 9: e96174.en_US
dc.identifier.citedreferenceHolmes, M., Liwak, U., Pricop, I., Wang, X., Tomavo, S., and Ananvoranich, S. ( 2010 ) Silencing of tachyzoite enolase 2 alters nuclear targeting of bradyzoite enolase 1 in Toxoplasma gondii. Microbes Infect 12: 19 – 27.en_US
dc.identifier.citedreferenceHorton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K., and Pease, L.R. ( 1989 ) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61 – 68.en_US
dc.identifier.citedreferenceKavanagh, K.L., Elling, R.A., and Wilson, D.K. ( 2004 ) Structure of Toxoplasma gondii LDH1: active‐site differences from human lactate dehydrogenases and the structural basis for efficient APAD + use. Biochemistry 43: 879 – 889.en_US
dc.identifier.citedreferenceKeren, H., Lev‐Maor, G., and Ast, G. ( 2010 ) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11: 345 – 355.en_US
dc.identifier.citedreferenceKibe, M.K., Coppin, A., Dendouga, N., Oria, G., Meurice, E., Mortuaire, M., et al. ( 2005 ) Transcriptional regulation of two stage‐specifically expressed genes in the protozoan parasite Toxoplasma gondii. Nucleic Acids Res 33: 1722 – 1736.en_US
dc.identifier.citedreferenceKim, E., Goren, A., and Ast, G. ( 2008 ) Alternative splicing: current perspectives. Bioessays 30: 38 – 47.en_US
dc.identifier.citedreferenceLareau, L.F., Brooks, A.N., Soergel, D.A., Meng, Q., and Brenner, S.E. ( 2007 ) The coupling of alternative splicing and nonsense‐mediated mRNA decay. Adv Exp Med Biol 623: 190 – 211.en_US
dc.identifier.citedreferenceLegrain, P., and Rosbash, M. ( 1989 ) Some cis‐ and trans‐acting mutants for splicing target pre‐mRNA to the cytoplasm. Cell 57: 573 – 583.en_US
dc.identifier.citedreferenceLi, X., Zhang, L.S., and Guan, M.X. ( 2005 ) Cloning and characterization of mouse mTERF encoding a mitochondrial transcriptional termination factor. Biochem Biophys Res Commun 326: 505 – 510.en_US
dc.identifier.citedreferenceManger, I.D., Hehl, A., Parmley, S., Sibley, L.D., Marra, M., Hillier, L., et al. ( 1998 ) Expressed sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of developmentally regulated genes. Infect Immun 66: 1632 – 1637.en_US
dc.identifier.citedreferenceMansilla, A., Lopez‐Sanchez, C., de la Rosa, E.J., Garcia‐Martinez, V., Martinez‐Salas, E., de Pablo, F., and Hernandez‐Sanchez, C. ( 2005 ) Developmental regulation of a proinsulin messenger RNA generated by intron retention. EMBO Rep 6: 1182 – 1187.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.