Show simple item record

Response of reverse convection to fast IMF transitions

dc.contributor.authorTaguchi, S.en_US
dc.contributor.authorTawara, A.en_US
dc.contributor.authorHairston, M. R.en_US
dc.contributor.authorSlavin, J. A.en_US
dc.contributor.authorLe, G.en_US
dc.contributor.authorMatzka, J.en_US
dc.contributor.authorStolle, C.en_US
dc.date.accessioned2015-07-01T20:56:18Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationTaguchi, S.; Tawara, A.; Hairston, M. R.; Slavin, J. A.; Le, G.; Matzka, J.; Stolle, C. (2015). "Response of reverse convection to fast IMF transitions." Journal of Geophysical Research: Space Physics 120(5): 4020-4037.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111947
dc.description.abstractThe nature of the transition that high‐latitude reverse convection makes in response to fast interplanetary magnetic field (IMF) changes is investigated using observations from multiple spacecraft and a ground magnetometer array. We focused on two fast IMF‐transition events on 22 April 2006. Immediately after the first event, three ST5 spacecraft identified a clear change in the distribution of the polar cap field‐aligned current. Coordinate observations with the Greenland magnetometer chain showed that the near‐noon Hall current distribution, which is closely related to the polar cap field‐aligned current or reverse convection, was in a transition state for about 10 min. For the second event, the Greenland magnetic perturbations also showed that a transition state occurred in the near‐noon sector for 10–15 min. Three DMSP spacecraft that traversed the polar cap provided evidence showing that variations of the ground magnetic perturbations were produced by the transition from clockwise plasma circulation to the anticlockwise circulation over the polar cap. A simple calculation based on the Biot‐Savart law shows that the near‐noon transition state is consistent with the approach of a new convection region to the near‐noon sector at the speed of 0.5–1 km s–1, which is coupled with the moving away of the old convection region at a similar speed. For the higher‐latitude sunward flow region, it is found that the convection takes a transition state almost simultaneously (within 1 min) with that in the near‐noon sector, i.e., quasi‐instantaneous response.Key PointsTransition state with a timescale of ~10 min in the near‐noon polar cap for BZ > 0The state is consistent with the passage of old and new convection regionsAlmost simultaneous initial response in the upstream polar cap and the near noonen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherfield‐aligned currenten_US
dc.subject.otherdayside polar capen_US
dc.subject.othertransition stateen_US
dc.subject.otherreverse convectionen_US
dc.subject.othercuspen_US
dc.titleResponse of reverse convection to fast IMF transitionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111947/1/jgra51794.pdf
dc.identifier.doi10.1002/2015JA021002en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceNishitani, N., T. Ogawa, N. Sato, H. Yamagishi, M. Pinnock, J.‐P. Villain, G. Sofko, and O. Troshichev ( 2002 ), A study of the dusk convection cell's response to an IMF southward turning, J. Geophys. Res., 107 ( A3 ), 1036, doi: 10.1029/2001JA900095.en_US
dc.identifier.citedreferenceFukushima, N. ( 1969 ), Equivalence in ground geomagnetic effect of Chapman‐Vestine's and Birkeland‐Alfven's electric current‐systems for polar magnetic storms, Rep. Ionos. Space Res. Jpn., 23 ( 3 ), 219 – 227.en_US
dc.identifier.citedreferenceGreenspan, M., P. B. Anderson, and J. M. Pelagatti ( 1988 ), Characteristics of the thermal plasma monitor (SSIES) for the Defense Meteorological Satellite Program (DMSP) spacecraft S8 through F10 Tech. Rep., AFGL‐TR‐86‐0227, Air Force Geophysical Laboratory, Hanscom Air Force Base, Mass.en_US
dc.identifier.citedreferenceHairston, M. R., and R. A. Heelis ( 1995 ), Response time of the polar ionospheric convection pattern to changes in the north‐south direction of the IMF, Geophys. Res. Lett., 22 ( 5 ), 631 – 634, doi: 10.1029/94GL03385.en_US
dc.identifier.citedreferenceWang, Y., G. Le, J. A. Slavin, S. A. Boardsen, and R. J. Strangeway ( 2009 ), Space Technology 5 measurements of auroral field‐aligned current sheet motion, Geophys. Res. Lett., 36, L02105, doi: 10.1029/2008GL035986.en_US
dc.identifier.citedreferenceHardy, D. A., L. K. Schmidt, M. S. Gussenhoven, F. J. Marshall, H. C. Yeh, T. L. Shumaker, A. Huber, and J. Pantazis ( 1984 ), Precipitating electron and ion detectors (SSJ/4) for block 5D/flights 4‐10 DMSP satellites: Calibration and data presentation, Tech. Rep. AFGL‐TR‐84‐0317, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.en_US
dc.identifier.citedreferenceHuang, C.‐S., D. Murr, G. J. Sofko, W. J. Hughes, and T. Moretto ( 2000 ), Ionospheric convection response to changes of interplanetary magnetic field Bz component during strong By component, J. Geophys. Res., 105 ( A3 ), 5231 – 5243, doi: 10.1029/1999JA000099.en_US
dc.identifier.citedreferenceIijima, T., T. A. Potemra, L. J. Zanetti, and P. F. Bythrow ( 1984 ), Large‐scale Birkeland currents in the dayside polar region during strongly northward IMF: A new Birkeland current system, J. Geophys. Res., 89 ( A9 ), 7441 – 7452, doi: 10.1029/JA089iA09p07441.en_US
dc.identifier.citedreferenceIshii, M., M. Sugiura, T. Iyemori, and J. A. Slavin ( 1992 ), Correlation between magnetic and electric field perturbations in the field‐aligned current regions deduced from DE 2 observations, J. Geophys. Res., 97 ( A9 ), 13,877 – 13,887, doi: 10.1029/92JA00110.en_US
dc.identifier.citedreferenceKertz, W. ( 1954 ), Modelle für erdmagnetisch induzierte elektrische Ströme im Untergrund, Nachr. Akad. Wiss. Göttingen, Math.‐Phys. Kl. Abt. IIa, 101 – 110.en_US
dc.identifier.citedreferenceKhan, H., and S. W. H. Cowley ( 1999 ), Observations of the response time of high‐latitude ionospheric convection to variations in the interplanetary magnetic field using EISCAT and IMP‐8 data, Ann. Geophys., 17, 1306 – 1335.en_US
dc.identifier.citedreferenceKnipp, D. J., et al. ( 1993 ), Ionospheric convection response to slow, strong variations in a northward interplanetary magnetic field: A case study for January 14, 1988, J. Geophys. Res., 98 ( A11 ), 19,273 – 19,292, doi: 10.1029/93JA01010.en_US
dc.identifier.citedreferenceLaakso, H., C. Perry, S. McCaffrey, D. Herment, A. J. Allen, C. C. Harvey, C. P. Escoubet, C. Gruenberger, M. G. G. T. Taylor, and R. Turner ( 2010 ), Cluster active archive: Overview, in The Cluster Active Archive, Astrophysics and Space Science Proceedings, edited by H. Laakso et al., pp. 3 – 37, Springer, Dordrecht, Netherlands.en_US
dc.identifier.citedreferenceLe, G., Y. Wang, J. A. Slavin, and R. J. Strangeway ( 2009 ), Space Technology 5 multipoint observations of temporal and spatial variability of field‐aligned currents, J. Geophys. Res., 114, A08206, doi: 10.1029/2009JA014081.en_US
dc.identifier.citedreferenceLuhmann, J. G., R. J. Walker, C. T. Russell, N. U. Crooker, J. R. Spreiter, and S. S. Stahara ( 1984 ), Patterns of potential magnetic field merging sites on the dayside magnetopause, J. Geophys. Res., 89 ( A3 ), 1739 – 1742, doi: 10.1029/JA089iA03p01739.en_US
dc.identifier.citedreferenceLühr, H., and S. Buchert ( 1988 ), Observational evidence for a link between currents in the geotail and in the auroral ionosphere, Ann. Geophys., 6 ( 2 ), 169 – 176.en_US
dc.identifier.citedreferenceMurr, D. L., and W. J. Hughes ( 2001 ), Reconfiguration timescales of ionospheric convection, Geophys. Res. Lett., 28 ( 11 ), 2145 – 2148, doi: 10.1029/2000GL012765.en_US
dc.identifier.citedreferenceRidley, A. J., G. Lu, C. R. Clauer, and V. O. Papitashvili ( 1998 ), A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique, J. Geophys. Res., 103 ( A3 ), 4023 – 4039, doi: 10.1029/97JA03328.en_US
dc.identifier.citedreferenceRosenbauer, H., H. Grünwaldt, M. D. Montgomery, G. Paschmann, and N. Sckopke ( 1975 ), Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle, J. Geophys. Res., 80 ( 19 ), 2723 – 2737, doi: 10.1029/JA080i019p02723.en_US
dc.identifier.citedreferenceRuohoniemi, J. M., and R. A. Greenwald ( 1998 ), The response of high‐latitude convection to a sudden southward IMF turning, Geophys. Res. Lett., 25 ( 15 ), 2913 – 2916, doi: 10.1029/98GL02212.en_US
dc.identifier.citedreferenceSlavin, J. A., G. Le, R. J. Strangeway, Y. Wang, S. A. Boardsen, M. B. Moldwin, and H. E. Spence ( 2008 ), Space Technology 5 multi‐point measurements of near‐Earth magnetic fields: Initial results, Geophys. Res. Lett., 35, L02107, doi: 10.1029/2007GL031728.en_US
dc.identifier.citedreferenceSugiura, M., N. C. Maynard, W. H. Farthing, J. P. Heppner, B. G. Ledley, and L. J. Cahill Jr. ( 1982 ), Initial results on the correlation between the magnetic and electric fields observed from the DE‐2 satellite in the field‐aligned current regions, Geophys. Res. Lett., 9, 985 – 988, doi: 10.1029/GL009i009p00985.en_US
dc.identifier.citedreferenceTaguchi, S., and R. A. Hoffman ( 1995 ), B X control of polar cap potential for northward interplanetary magnetic field, J. Geophys. Res., 100 ( A10 ), 19,313 – 19,320, doi: 10.1029/95JA01085.en_US
dc.identifier.citedreferenceTaguchi, S., and R. A. Hoffman ( 1996 ), Control parameters for polar ionospheric convection patterns during northward interplanetary magnetic field, Geophys. Res. Lett., 23, 637 – 640, doi: 10.1029/96GL00452.en_US
dc.identifier.citedreferenceTaguchi, S., M. Sugiura, J. D. Winningham, and J. A. Slavin ( 1993 ), Characterization of the IMF B Y ‐dependent field‐aligned currents in the cleft region based on DE 2 observations, J. Geophys. Res., 98, 1393 – 1407, doi: 10.1029/92JA01014.en_US
dc.identifier.citedreferenceTaguchi, S., J. A. Slavin, and R. P. Lepping ( 1997 ), IMP 8 observations of traveling compression regions in the mid‐tail near substorm expansion phase onset, Geophys. Res. Lett., 24 ( 4 ), 353 – 356, doi: 10.1029/97GL00121.en_US
dc.identifier.citedreferenceTodd, H., S. W. H. Cowley, M. Lockwood, D. M. Willis, and H. Lühr ( 1988 ), Response time of the high‐latitude dayside ionosphere to sudden changes in the north‐south component of the IMF, Planet. Space Sci., 36 ( 12 ), 1415 – 1428, doi: 10.1016/0032-0633(88)90008-6.en_US
dc.identifier.citedreferenceAraki, T., T. Kamei, and T. Iyemori ( 1984 ), Polar cap vertical currents associated with northward interplanetary magnetic field, Geophys. Res. Lett., 11, 23 – 26, doi: 10.1029/GL011i001p00023.en_US
dc.identifier.citedreferenceBalogh, A., et al. ( 2001 ), The Cluster magnetic field investigation: Overview of in‐flight performance and initial results, Ann. Geophys., 19, 1207 – 1217.en_US
dc.identifier.citedreferenceClauer, C. R., and E. Friis‐Christensen ( 1988 ), High‐latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation, J. Geophys. Res., 93 ( A4 ), 2749 – 2757, doi: 10.1029/JA093iA04p02749.en_US
dc.identifier.citedreferenceCoroniti, F. V., and C. F. Kennel ( 1973 ), Can the ionosphere regulate magnetospheric convection?, J. Geophys. Res., 78 ( 16 ), 2837 – 2851, doi: 10.1029/JA078i016p02837.en_US
dc.identifier.citedreferenceCowley, S. W. H., and M. Lockwood ( 1992 ), Excitation and decay of solar wind‐driven flows in the magnetosphere‐ionosphere system, Ann. Geophys., 10, 103 – 115.en_US
dc.identifier.citedreferenceEtemadi, A., S. W. H. Cowley, M. Lockwood, B. J. I. Bromage, D. M. Willis, and H. Lühr ( 1988 ), The dependence of high‐latitude dayside ionospheric flows on the north‐south component of the IMF: A high time resolution correlation analysis using EISCAT “POLAR” and AMPTE UKS and IRM data, Planet. Space Sci., 36 ( 5 ), 471 – 498, doi: 10.1016/0032-0633(88)90107-9.en_US
dc.identifier.citedreferenceFiori, R. A. D., D. H. Boteler, and A. V. Koustov ( 2012 ), Response of ionospheric convection to sharp southward IMF turnings inferred from magnetometer and radar data, J. Geophys. Res., 117, A09302, doi: 10.1029/2012JA017755.en_US
dc.identifier.citedreferenceFreeman, M. P. ( 2003 ), A unified model of the response of ionospheric convection to changes in the interplanetary magnetic field, J. Geophys. Res., 108 ( A1 ), 1024, doi: 10.1029/2002JA009385.en_US
dc.identifier.citedreferenceFriis‐Christensen, E., M. A. McHenry, C. R. Clauer, and S. Vennerstrøm ( 1988 ), Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind, Geophys. Res. Lett., 15 ( 3 ), 253 – 256, doi: 10.1029/GL015i003p00253.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.