Show simple item record

Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus

dc.contributor.authorFu, Xiangrongen_US
dc.contributor.authorGuo, Zehuaen_US
dc.contributor.authorDong, Chuanfeien_US
dc.contributor.authorGary, S. Peteren_US
dc.date.accessioned2015-07-01T20:56:20Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05-16en_US
dc.identifier.citationFu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter (2015). "Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus." Geophysical Research Letters 42(9): 3150-3159.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111951
dc.description.abstractAn interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω≃0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.Key PointsRecent observations of chorus show multiple bandsNonlinear wave‐particle resonances can occur at subcyclotron frequenciesSubcyclotron resonance may lead to formation of gaps in banded chorusen_US
dc.publisherCambridge Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othernonlinear theoryen_US
dc.subject.othersubcyclotron resonanceen_US
dc.subject.otherbanded chorusen_US
dc.titleNonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111951/1/grl52912.pdf
dc.identifier.doi10.1002/2015GL064182en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceOmura, Y., M. Hikishima, Y. Katoh, D. Summers, and S. Yagitani ( 2009 ), Nonlinear mechanisms of lower‐band and upper‐band VLF chorus emissions in the magnetosphere, J. Geophys. Res., 114, A07217, doi: 10.1029/2009JA014206.en_US
dc.identifier.citedreferenceCarpenter, D. L., and R. R. Anderson ( 1992 ), An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097 – 1108.en_US
dc.identifier.citedreferenceChen, L., Z. Lin, and R. White ( 2001 ), On resonant heating below the cyclotron frequency, Phys. Plasmas, 8 ( 11 ), 4713 – 4716, doi: 10.1063/1.1406939.en_US
dc.identifier.citedreferenceDong, C., and N. Singh ( 2013 ), Ion pseudoheating by low‐frequency Alfvén waves revisited, Phys. Plasmas, 20 ( 1 ), 12,121.en_US
dc.identifier.citedreferenceFu, X., et al. ( 2014 ), Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle‐in‐cell simulations, J. Geophys. Res. Space Physics, 119, 8288 – 8298, doi: 10.1002/2014JA020364.en_US
dc.identifier.citedreferenceGary, S. P., Y. Kazimura, H. Li, and J.‐I. Sakai ( 2000 ), Simulations of electron/electron instabilities: Electromagnetic fluctuations, Phys. Plasmas, 7 ( 2 ), 448 – 456, doi: 10.1063/1.873829.en_US
dc.identifier.citedreferenceGary, S. P., K. Liu, and D. Winske ( 2011 ), Whistler anisotropy instability at low electron β: Particle‐in‐cell simulations, Phys. Plasmas, 18 ( 8 ), 82,902, doi: 10.1063/1.3610378.en_US
dc.identifier.citedreferenceGuo, Z., C. Crabtree, and L. Chen ( 2008 ), Theory of charged particle heating by low‐frequency Alfvén waves, Phys. Plasmas, 15 ( 3 ), 32,311, doi: 10.1063/1.2899326.en_US
dc.identifier.citedreferenceHospodarsky, G. B., T. F. Averkamp, W. S. Kurth, D. a. Gurnett, J. D. Menietti, O. Santolik, and M. K. Dougherty ( 2008 ), Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument, J. Geophys. Res., 113, A12206, doi: 10.1029/2008JA013237.en_US
dc.identifier.citedreferenceJosé, J. V., and E. J. Saletan ( 1998 ), Classical Dynamics: A Contemporary Approach, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceKennel, C. F., and F. Engelmann ( 1966 ), Velocity space diffusion from weak plasma turbulence in a magnetic field, Phys. Fluids, 9 ( 12 ), 2377 – 2388, doi: 10.1063/1.1761629.en_US
dc.identifier.citedreferenceLi, W., et al. ( 2013 ), Characteristics of the Poynting flux and wave normal vectors of whistler‐mode waves observed on THEMIS, J. Geophys. Res. Space Physics, 118, 1461 – 1471, doi: 10.1002/jgra.50176.en_US
dc.identifier.citedreferenceLiu, K., S. P. Gary, and D. Winske ( 2011 ), Excitation of banded whistler waves in the magnetosphere, Geophys. Res. Lett., 38, L14108, doi: 10.1029/2011GL048375.en_US
dc.identifier.citedreferenceLu, Q., and L. Chen ( 2009 ), Ion heating by a spectrum of obliquely propagating low‐frequency Alfvén waves, Astrophys. J., 704, 743 – 749, doi: 10.1088/0004-637X/704/1/743.en_US
dc.identifier.citedreferenceMacusova, E., O. Santolik, N. Cornilleau‐Wehrlin, J. S. Pickett, and D. A. Gurnett ( 2014 ), Multi‐banded structure of chorus‐like emission, in 31st URSI General Assembly and Scientific Symposium (URSI GASS), pp. 1 – 4, IEEE, Beijing, China.en_US
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, A. Sicard‐Piet, D. Boscher, K. H. Yearby, W. Li, and R. M. Thorne ( 2012 ), Global model of lower band and upper band chorus from multiple satellite observations, J. Geophys. Res., 117, A10225, doi: 10.1029/2012JA017978.en_US
dc.identifier.citedreferenceSantolík, O., C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, and S. R. Bounds ( 2014 ), Fine structure of large amplitude chorus wave packets, Geophys. Res. Lett., 41 ( 2 ), 293 – 299, doi: 10.1002/2013GL058889.en_US
dc.identifier.citedreferenceSazhin, S. S., and M. Hayakawa ( 1992 ), Magnetospheric chorus emissions: A review, Planet. Space Sci., 40 ( 5 ), 681 – 697.en_US
dc.identifier.citedreferenceSchriver, D., et al. ( 2010 ), Generation of whistler mode emissions in the inner magnetosphere: An event study, J. Geophys. Res., 115, A00F17, doi: 10.1029/2009JA014932.en_US
dc.identifier.citedreferenceStix, T. H. ( 1992 ), Waves in Plasmas, Springer‐Verlag, New York.en_US
dc.identifier.citedreferenceThorne, R. M. ( 2010 ), Radiation belt dynamics: The importance of wave‐particle interactions, Geophys. Res. Lett., 37, L22107, doi: 10.1029/2010GL044990.en_US
dc.identifier.citedreferenceThorne, R. M., et al. ( 2013 ), Rapid local acceleration of relativistic radiation‐belt electrons by magnetospheric chorus, Nature, 504 ( 7480 ), 411 – 414, doi: 10.1038/nature12889.en_US
dc.identifier.citedreferenceBell, T. F., U. S. Inan, N. Haque, and J. S. Pickett ( 2009 ), Source regions of banded chorus, Geophys. Res. Lett., 36, L11101, doi: 10.1029/2009GL037629.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.