An Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteries
dc.contributor.author | Tutusaus, Oscar | en_US |
dc.contributor.author | Mohtadi, Rana | en_US |
dc.contributor.author | Arthur, Timothy S. | en_US |
dc.contributor.author | Mizuno, Fuminori | en_US |
dc.contributor.author | Nelson, Emily G. | en_US |
dc.contributor.author | Sevryugina, Yulia V. | en_US |
dc.date.accessioned | 2015-07-01T20:56:21Z | |
dc.date.available | 2016-07-05T17:27:58Z | en |
dc.date.issued | 2015-06-26 | en_US |
dc.identifier.citation | Tutusaus, Oscar; Mohtadi, Rana; Arthur, Timothy S.; Mizuno, Fuminori; Nelson, Emily G.; Sevryugina, Yulia V. (2015). "An Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteries." Angewandte Chemie 127(27): 8011-8015. | en_US |
dc.identifier.issn | 0044-8249 | en_US |
dc.identifier.issn | 1521-3757 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/111952 | |
dc.description.abstract | Unlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride‐based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12− produced the first halogen‐free, simple‐type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non‐corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high‐voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.Ein einfacher und doch vielfältiger Magnesiummonocarboran(MMC)‐basierter Elektrolyt als bemerkenswertes halogenfreies und umweltschonendes System ist mit Mg‐Metall kompatibel und weist die bislang höchste anodische Stabilität auf. Wegen seiner nichtkorrodierenden Art ermöglicht der MMC‐Elektrolyt die Untersuchung von Hochspannungskathoden in einer Knopfzelle – ein wichtiger Schritt hin zu praktisch einsetzbaren wiederaufladbaren Mg‐Batterien. | en_US |
dc.publisher | WILEY‐VCH Verlag | en_US |
dc.subject.other | Wiederaufladbare Batterien | en_US |
dc.subject.other | Nichtkorrodierende Elektrolyte | en_US |
dc.subject.other | Magnesium | en_US |
dc.subject.other | Elektrochemie | en_US |
dc.subject.other | Carborane | en_US |
dc.title | An Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteries | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Materials Science and Engineering | en_US |
dc.subject.hlbsecondlevel | Chemistry | en_US |
dc.subject.hlbsecondlevel | Chemical Engineering | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan (USA) | en_US |
dc.contributor.affiliationother | Department of Chemistry, Texas Christian University (USA) | en_US |
dc.contributor.affiliationother | Materials Research Department, Toyota Research Institute of North America, Ann Arbor, MI 48105 (USA) | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/111952/1/8011_ftp.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/111952/2/ange_201412202_sm_miscellaneous_information.pdf | |
dc.identifier.doi | 10.1002/ange.201412202 | en_US |
dc.identifier.source | Angewandte Chemie | en_US |
dc.identifier.citedreference | E. Nasybulin, W. Xu, M. H. Engelhard, Z. Nie, S. D. Burton, L. Cosimbescu, M. E. Gross, J.‐G. Zhang, J. Phys. Chem. C 2013, 117, 2635 – 2645. | en_US |
dc.identifier.citedreference | T. D. Gregory, R. J. Hoffman, R. C. Winterton, J. Electrochem. Soc. 1990, 137, 775 – 780. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | O. Tutusaus, R. Mohtadi, ChemElectroChem 2015, 2, 51 – 57; | en_US |
dc.identifier.citedreference | Z. Zhao‐Karger, X. Zhao, D. Wang, T. Diemant, R. J. Behm, M. Fichtner, Adv. Energy Mater. 2014, DOI:. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | D. Lv, T. Xu, P. Saha, M. K. Datta, M. L. Gordin, A. Manivannan, P. N. Kumta, D. Wang, J. Electrochem. Soc. 2013, 160, A 351 –A 355; | en_US |
dc.identifier.citedreference | J. Muldoon, C. B. Bucur, A. G. Oliver, J. Zajicek, G. D. Allred, W. C. Boggess, Energy Environ. Sci. 2013, 6, 482 – 487. | en_US |
dc.identifier.citedreference | I. Shterenberg, M. Salama, Y. Gofer, E. Levi, D. Aurbach, MRS Bull. 2014, 39, 453 – 460. | en_US |
dc.identifier.citedreference | R. Mohtadi, M. Matsui, T. S. Arthur, S.‐J. Hwang, Angew. Chem. Int. Ed. 2012, 51, 9780 – 9783; Angew. Chem. 2012, 124, 9918 – 9921. | en_US |
dc.identifier.citedreference | T. J. Carter, R. Mohtadi, T. S. Arthur, F. Mizuno, R. Zhang, S. Shirai, J. W. Kampf, Angew. Chem. Int. Ed. 2014, 53, 3173 – 3177; Angew. Chem. 2014, 126, 3237 – 3241. | en_US |
dc.identifier.citedreference | W. Clegg, D. A. Brown, S. J. Bryan, K. Wade, J. Organomet. Chem. 1987, 325, 39 – 46. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | C. A. Reed, Acc. Chem. Res. 1998, 31, 133 – 139; | en_US |
dc.identifier.citedreference | C. Douvris, J. Michl, Chem. Rev. 2013, 113, PR 179 –PR 233. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | B. T. King, S. Körbe, P. J. Schreiber, J. Clayton, A. Němcová, Z. Havlas, K. Vyakaranam, M. G. Fete, I. Zharov, J. Ceremuga, J. Michl, J. Am. Chem. Soc. 2007, 129, 12960 – 12980; | en_US |
dc.identifier.citedreference | S. Giri, S. Behera, P. Jena, Angew. Chem. Int. Ed. 2014, 53, 13916 – 13919; Angew. Chem. 2014, 126, 14136 – 14139. | en_US |
dc.identifier.citedreference | X. Chen, H. K. Lingam, Z. Huang, T. Yisgedu, J.‐C. Zhao, S. G. Shore, J. Phys. Chem. Lett. 2010, 1, 201 – 204. | en_US |
dc.identifier.citedreference | For instance, Mg(TFSI) 2 (TFSI=bis(trifluoromethylsulfonyl)imide) is not well‐dissociated in diglyme solutions, with ca. 0.9 TFSI molecules remaining associated with Mg 2+. See further discussion in: S. H. Lapidus, N. N. Rajput, X. Qu, K. W. Chapman, K. A. Persson, P. J. Chupas, Phys. Chem. Chem. Phys. 2014, 16, 21941 – 21945. | en_US |
dc.identifier.citedreference | Such a Mg‐G4 coordination mode was previously observed in the structure of bis( p ‐tert‐butylphenyl)magnesium tetraglyme solvate reported in: P. R. Markies, O. S. Akkerman, F. Bickelhaupt, W. J. J. Smeets, A. L. Spek, Organometallics 1994, 13, 2616 – 2627. | en_US |
dc.identifier.citedreference | Similar solvent effects on the coulombic efficiency were reported on Mg(BH 4 ) 2 in Refs. [8,9]. | en_US |
dc.identifier.citedreference | Mg deposition was confirmed by XRD (Supporting Information, Figure S28) and SEM analysis (Supporting InformationI, Figure S29). | en_US |
dc.identifier.citedreference | K. Nakahara, S. Iwasa, J. Iriyama, Y. Morioka, M. Suguro, M. Satoh, E. J. Cairns, Electrochim. Acta 2006, 52, 921 – 927. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | R. Zhang, X. Yu, K.‐W. Nam, C. Ling, T. S. Arthur, W. Song, A. M. Knapp, X.‐Q. Yang, M. Matsui, Electrochem. Commun. 2012, 23, 110 – 113; | en_US |
dc.identifier.citedreference | T. S. Arthur, R. Zhang, C. Ling, P.‐A. Glans, X. Fan, J. Guo, F. Mizuno, ACS Appl. Mater. Interfaces 2014, 6, 7004 – 7008; | en_US |
dc.identifier.citedreference | C. Ling, F. Mizuno, Chem. Mater. 2013, 25, 3062 – 3071. | en_US |
dc.identifier.citedreference | High‐voltage Mg cathodes that are reversible, robust, and have stable cycling, such as those used in Li‐ion systems, have not yet been demonstrated. Studies of cathodes showing reversible Mg 2+ insertion/deinsertion, such as V 2 O 5 (nano or thin film), were limited to three‐electrode cells that use Mg‐passivating electrolytes (that is, Mg(ClO 4 ) 2 /CH 3 CN) and do not warrant performance in a battery setup. As our purpose is to demonstrate a coin cell, we used α‐MnO 2 despite its capacity fade (ca. 50 %) because it was studied and analyzed in a battery configuration (used GC current collectors to mitigate corrosion). Future battery and fundamental interfacial studies of MMC/G4 on cathodes such as V 2 O 5 may be fruitful in further understanding this system and enabling these cathodes. For details on Mg cathodes, see Refs. [3a,c, 7, 20]. | en_US |
dc.identifier.citedreference | Cycling SS coin cells was shown using Mg(TFSI) 2 in DME/diglyme solvents. Such system required activation and was ran at slow rates owing to the known passivation effects of the TFSI anion; more details are given in: S.‐Y. Ha, Y.‐W. Lee, S. W. Woo, B. Koo, J.‐S. Kim, J. Cho, K. T. Lee, N.‐S. Choi, ACS Appl. Mater. Interfaces 2014, 6, 4063 – 4073. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | D. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 2003, 3, 61 – 73; | en_US |
dc.identifier.citedreference | M. Matsui, J. Power Sources 2011, 196, 7048 – 7055. | en_US |
dc.identifier.citedreference | D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724 – 727. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 2013, 6, 2265 – 2279; | en_US |
dc.identifier.citedreference | J. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 2012, 5, 5941 – 5950; | en_US |
dc.identifier.citedreference | R. Mohtadi, F. Mizuno, Beilstein J. Nanotechnol. 2014, 5, 1291 – 1311. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.