Show simple item record

An Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteries

dc.contributor.authorTutusaus, Oscaren_US
dc.contributor.authorMohtadi, Ranaen_US
dc.contributor.authorArthur, Timothy S.en_US
dc.contributor.authorMizuno, Fuminorien_US
dc.contributor.authorNelson, Emily G.en_US
dc.contributor.authorSevryugina, Yulia V.en_US
dc.date.accessioned2015-07-01T20:56:21Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06-26en_US
dc.identifier.citationTutusaus, Oscar; Mohtadi, Rana; Arthur, Timothy S.; Mizuno, Fuminori; Nelson, Emily G.; Sevryugina, Yulia V. (2015). "An Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteries." Angewandte Chemie 127(27): 8011-8015.en_US
dc.identifier.issn0044-8249en_US
dc.identifier.issn1521-3757en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111952
dc.description.abstractUnlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride‐based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12− produced the first halogen‐free, simple‐type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non‐corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high‐voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.Ein einfacher und doch vielfältiger Magnesiummonocarboran(MMC)‐basierter Elektrolyt als bemerkenswertes halogenfreies und umweltschonendes System ist mit Mg‐Metall kompatibel und weist die bislang höchste anodische Stabilität auf. Wegen seiner nichtkorrodierenden Art ermöglicht der MMC‐Elektrolyt die Untersuchung von Hochspannungskathoden in einer Knopfzelle – ein wichtiger Schritt hin zu praktisch einsetzbaren wiederaufladbaren Mg‐Batterien.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherWiederaufladbare Batterienen_US
dc.subject.otherNichtkorrodierende Elektrolyteen_US
dc.subject.otherMagnesiumen_US
dc.subject.otherElektrochemieen_US
dc.subject.otherCarboraneen_US
dc.titleAn Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteriesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan (USA)en_US
dc.contributor.affiliationotherDepartment of Chemistry, Texas Christian University (USA)en_US
dc.contributor.affiliationotherMaterials Research Department, Toyota Research Institute of North America, Ann Arbor, MI 48105 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111952/1/8011_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111952/2/ange_201412202_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/ange.201412202en_US
dc.identifier.sourceAngewandte Chemieen_US
dc.identifier.citedreferenceE. Nasybulin, W. Xu, M. H. Engelhard, Z. Nie, S. D. Burton, L. Cosimbescu, M. E. Gross, J.‐G. Zhang, J. Phys. Chem. C 2013, 117, 2635 – 2645.en_US
dc.identifier.citedreferenceT. D. Gregory, R. J. Hoffman, R. C. Winterton, J. Electrochem. Soc. 1990, 137, 775 – 780.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceO. Tutusaus, R. Mohtadi, ChemElectroChem 2015, 2, 51 – 57;en_US
dc.identifier.citedreferenceZ. Zhao‐Karger, X. Zhao, D. Wang, T. Diemant, R. J. Behm, M. Fichtner, Adv. Energy Mater. ­ 2014, DOI:.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. Lv, T. Xu, P. Saha, M. K. Datta, M. L. Gordin, A. Manivannan, P. N. Kumta, D. Wang, J. Electrochem. Soc. 2013, 160, A 351 –A 355;en_US
dc.identifier.citedreferenceJ. Muldoon, C. B. Bucur, A. G. Oliver, J. Zajicek, G. D. Allred, W. C. Boggess, Energy Environ. Sci. 2013, 6, 482 – 487.en_US
dc.identifier.citedreferenceI. Shterenberg, M. Salama, Y. Gofer, E. Levi, D. Aurbach, MRS Bull. 2014, 39, 453 – 460.en_US
dc.identifier.citedreferenceR. Mohtadi, M. Matsui, T. S. Arthur, S.‐J. Hwang, Angew. Chem. Int. Ed. 2012, 51, 9780 – 9783; Angew. Chem. 2012, 124, 9918 – 9921.en_US
dc.identifier.citedreferenceT. J. Carter, R. Mohtadi, T. S. Arthur, F. Mizuno, R. Zhang, S. Shirai, J. W. Kampf, Angew. Chem. Int. Ed. 2014, 53, 3173 – 3177; Angew. Chem. 2014, 126, 3237 – 3241.en_US
dc.identifier.citedreferenceW. Clegg, D. A. Brown, S. J. Bryan, K. Wade, J. Organomet. Chem. 1987, 325, 39 – 46.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceC. A. Reed, Acc. Chem. Res. 1998, 31, 133 – 139;en_US
dc.identifier.citedreferenceC. Douvris, J. Michl, Chem. Rev. 2013, 113, PR 179 –PR 233.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceB. T. King, S. Körbe, P. J. Schreiber, J. Clayton, A. Němcová, Z. Havlas, K. Vyakaranam, M. G. Fete, I. Zharov, J. Ceremuga, J. Michl, J. Am. Chem. Soc. 2007, 129, 12960 – 12980;en_US
dc.identifier.citedreferenceS. Giri, S. Behera, P. Jena, Angew. Chem. Int. Ed. 2014, 53, 13916 – 13919; Angew. Chem. 2014, 126, 14136 – 14139.en_US
dc.identifier.citedreferenceX. Chen, H. K. Lingam, Z. Huang, T. Yisgedu, J.‐C. Zhao, S. G. Shore, J. Phys. Chem. Lett. 2010, 1, 201 – 204.en_US
dc.identifier.citedreferenceFor instance, Mg(TFSI) 2 (TFSI=bis(trifluoromethylsulfonyl)imide) is not well‐dissociated in diglyme solutions, with ca. 0.9 TFSI molecules remaining associated with Mg 2+. See further discussion in: S. H. Lapidus, N. N. Rajput, X. Qu, K. W. Chapman, K. A. Persson, P. J. Chupas, Phys. Chem. Chem. Phys. 2014, 16, 21941 – 21945.en_US
dc.identifier.citedreferenceSuch a Mg‐G4 coordination mode was previously observed in the structure of bis( p ‐tert‐butylphenyl)magnesium tetraglyme solvate reported in: P. R. Markies, O. S. Akkerman, F. Bickelhaupt, W. J. J. Smeets, A. L. Spek, Organometallics 1994, 13, 2616 – 2627.en_US
dc.identifier.citedreferenceSimilar solvent effects on the coulombic efficiency were reported on Mg(BH 4 ) 2 in Refs. [8,9].en_US
dc.identifier.citedreferenceMg deposition was confirmed by XRD (Supporting Information, Figure S28) and SEM analysis (Supporting InformationI, Figure S29).en_US
dc.identifier.citedreferenceK. Nakahara, S. Iwasa, J. Iriyama, Y. Morioka, M. Suguro, M. Satoh, E. J. Cairns, Electrochim. Acta 2006, 52, 921 – 927.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceR. Zhang, X. Yu, K.‐W. Nam, C. Ling, T. S. Arthur, W. Song, A. M. Knapp, X.‐Q. Yang, M. Matsui, Electrochem. Commun. 2012, 23, 110 – 113;en_US
dc.identifier.citedreferenceT. S. Arthur, R. Zhang, C. Ling, P.‐A. Glans, X. Fan, J. Guo, F. Mizuno, ACS Appl. Mater. Interfaces 2014, 6, 7004 – 7008;en_US
dc.identifier.citedreferenceC. Ling, F. Mizuno, Chem. Mater. 2013, 25, 3062 – 3071.en_US
dc.identifier.citedreferenceHigh‐voltage Mg cathodes that are reversible, robust, and have stable cycling, such as those used in Li‐ion systems, have not yet been demonstrated. Studies of cathodes showing reversible Mg 2+ insertion/deinsertion, such as V 2 O 5 (nano or thin film), were limited to three‐electrode cells that use Mg‐passivating electrolytes (that is, Mg(ClO 4 ) 2 /CH 3 CN) and do not warrant performance in a battery setup. As our purpose is to demonstrate a coin cell, we used α‐MnO 2 despite its capacity fade (ca. 50 %) because it was studied and analyzed in a battery configuration (used GC current collectors to mitigate corrosion). Future battery and fundamental interfacial studies of MMC/G4 on cathodes such as V 2 O 5 may be fruitful in further understanding this system and enabling these cathodes. For details on Mg cathodes, see Refs. [3a,c, 7, 20].en_US
dc.identifier.citedreferenceCycling SS coin cells was shown using Mg(TFSI) 2 in DME/diglyme solvents. Such system required activation and was ran at slow rates owing to the known passivation effects of the TFSI anion; more details are given in: S.‐Y. Ha, Y.‐W. Lee, S. W. Woo, B. Koo, J.‐S. Kim, J. Cho, K. T. Lee, N.‐S. Choi, ACS Appl. Mater. Interfaces 2014, 6, 4063 – 4073.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 2003, 3, 61 – 73;en_US
dc.identifier.citedreferenceM. Matsui, J. Power Sources 2011, 196, 7048 – 7055.en_US
dc.identifier.citedreferenceD. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724 – 727.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 2013, 6, 2265 – 2279;en_US
dc.identifier.citedreferenceJ. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 2012, 5, 5941 – 5950;en_US
dc.identifier.citedreferenceR. Mohtadi, F. Mizuno, Beilstein J. Nanotechnol. 2014, 5, 1291 – 1311.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.