Show simple item record

Effects of Acute and Sustained Pain Manipulations on Performance in a Visual‐Signal Detection Task of Attention in Rats

dc.contributor.authorFreitas, Kelen C.en_US
dc.contributor.authorHillhouse, Todd M.en_US
dc.contributor.authorLeitl, Michael D.en_US
dc.contributor.authorNegus, Steve S.en_US
dc.date.accessioned2015-07-01T20:56:23Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-06en_US
dc.identifier.citationFreitas, Kelen C.; Hillhouse, Todd M.; Leitl, Michael D.; Negus, Steve S. (2015). "Effects of Acute and Sustained Pain Manipulations on Performance in a Visual‐Signal Detection Task of Attention in Rats." Drug Development Research 76(4): 194-203.en_US
dc.identifier.issn0272-4391en_US
dc.identifier.issn1098-2299en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111955
dc.description.abstractPreclinical ResearchPatients with pain often display cognitive impairment including deficits in attention. The visual‐signal detection task (VSDT) is a behavioral procedure for assessment of attention in rodents. Male Sprague Dawley rats were trained in a VSDT and tested with three different noxious stimuli: (i) intraperitoneal injection of lactic acid; (ii) intraplantar injection of formalin; and (iii) intraplantar injection of complete Freund's adjuvant (CFA). The muscarinic acetylcholine receptor antagonist, scopolamine was also tested as a positive control. Scopolamine (0.01–1.0 mg/kg) dose dependently reduced accuracy and increased response latencies during completed trials with higher scopolamine doses increasing omissions. Lactic acid (0.56–5.6% ip) also increased response latencies and omissions, although it failed to alter measures of response accuracy. Formalin produced a transient decrease in accuracy while also increasing both response latency and omissions. CFA failed to alter VSDT performance. Although VSDT effects were transient for formalin and absent for CFA, both treatments produced mechanical allodynia and paw edema for up to 7 days. These results support the potential for noxious stimuli to produce a pain‐related disruption of attention in rats. However, relatively strong noxious stimulation appears necessary to disrupt performance in this version of the VSDT. Drug Dev Res 76 : 194–203, 2015. © 2015 Wiley Periodicals, Inc.en_US
dc.publisherElsevieren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherlactic aciden_US
dc.subject.otherpainen_US
dc.subject.otherattentionen_US
dc.titleEffects of Acute and Sustained Pain Manipulations on Performance in a Visual‐Signal Detection Task of Attention in Ratsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111955/1/ddr21255.pdf
dc.identifier.doi10.1002/ddr.21255en_US
dc.identifier.sourceDrug Development Researchen_US
dc.identifier.citedreferencePais‐Vieira M, Lima D, Galhardo V. 2009. Sustained attention deficits in rats with chronic inflammatory pain. Neurosci Lett 463: 98 – 102.en_US
dc.identifier.citedreferenceFu K, Light A, Maixner W. 2001. Long‐lasting inflammation and long‐term hyperalgesia after subcutaneous formalin injection into the rat hindpaw. J Pain 2: 2 – 11.en_US
dc.identifier.citedreferenceGrace G, Nielson W, Hopkins M, Berg M. 1999. Concentration and memory deficits in patients with fibromyalgia syndrome. J Clin Exp Neuropsychol 21: 477 – 487.en_US
dc.identifier.citedreferenceGrace P, Strand K, Maier S, Watkins L. 2014. Suppression of voluntary wheel running in rats is dependent on the site of inflammation: evidence for voluntary running as a measure of hind paw‐evoked pain. J Pain 15: 121 – 128.en_US
dc.identifier.citedreferenceHillhouse T, Prus A. 2013. Effects of the neurotensin NTS 1 receptor agonist PD149163 on visual signal detection in rats. Eur J Pharmacol 721: 201 – 207.en_US
dc.identifier.citedreferenceKeeler J, Robbins T. 2011. Translating cognition from animals to humans. Biochem Pharmacol 81: 1356 – 1366.en_US
dc.identifier.citedreferenceLeitl M, Potter D, Cheng K, Rice K, Carlezon W, Negus S. 2014. Sustained pain‐related depression of behavior: effects of intraplantar formalin and complete freund's adjuvant on intracranial self‐stimualtion (ICSS) and endogenous kappa opioid biomarkers in rats. Mol Pain 10: 62.en_US
dc.identifier.citedreferenceLorenz J, Beck H, Bromm B. 1997. Cognitive performance, mood and experimental pain before and during morphine‐induced analgesia in patients with chronic non‐malignant pain. Pain 73: 369 – 375.en_US
dc.identifier.citedreferenceLenz R, Baker J, Locke C, Rueter L, Mohler E, Saltarelli M. 2012. The scopolamine model as a pharmacodynamic marker in early drug development. Psychopharmacol 220: 97 – 107.en_US
dc.identifier.citedreferenceMelzack R, Katz J. 2006. Pain assessment in adult patients. In: McMahon S, Koltzenburg M, editors Wall and Melzack's textbook of pain, 5th ed. London: Elsevier. p 291 – 304.en_US
dc.identifier.citedreferenceMilar K. 1981. Cholinergic drug effects on visual discriminations: a signal detection analysis. Psychopharmacol 74: 383 – 388.en_US
dc.identifier.citedreferenceMishima K, Fujii M, Aoo N, Yoshikawa T, Fukue Y, Fujiwara M. 2002. The pharmacological characterization of attentional processes using a two‐lever choice reaction time task in rats. Biol Pharm Bull 25: 1570 – 1576.en_US
dc.identifier.citedreferenceMogil J. 2009. Animal models of pain: progress and challenges. Nat Rev Neurosci 10: 283 – 294.en_US
dc.identifier.citedreferenceNegus S. 2013. Expression and treatment of pain‐related behavioral depression. Lab Anim 42: 292 – 300.en_US
dc.identifier.citedreferenceNegus S, Vanderah T, Brandt M, Bilsky E, Becerra L, Borsook D. 2006. Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319: 507 – 514.en_US
dc.identifier.citedreferenceParasuraman, R. 1984. Sustained attention in detection and discrimination, In: Parasuraman R, Davies DR, editors Varieties of attention. Orlando: Academic Press. p 243 – 67.en_US
dc.identifier.citedreferencePereira Do Carmo G, Stevenson G, Carlezon W, Negus, S. 2009. Effects of pain‐ and analgesia‐related manipulations on intracranial self‐stimulation in rats: further studies on pain‐depressed behavior. Pain 144: 170 – 177.en_US
dc.identifier.citedreferenceRezvani A, Levin E. 2004. Nicotine‐antipsychotic drug interactions and attentional performance in female rats. Eur J Pharmacol 486: 175 – 82.en_US
dc.identifier.citedreferenceRezvani A, Kholdebarin E, Cauley M, Dawson E, Levin E. 2009. Attenuation of pharmacologically‐induced attentional impairment by methylphenidate in rats. Pharmacol Biochem Behav 92: 141 – 146.en_US
dc.identifier.citedreferenceRosenberg M, Carroll F, Negus S. 2013. Effects of monoamine reuptake inhibitors in assays of acute pain‐stimulated and pain‐depressed behavior in rats. J Pain 14: 246 – 259.en_US
dc.identifier.citedreferenceTjølsen A, Berge O, Hunskaar S, Rosland J, Hole K. 1992. The formalin test: an evaluation of the method. Pain 51: 5 – 17.en_US
dc.identifier.citedreferenceVierck C, Yezierski R, Light A. 2008. Long‐lasting hyperalgesia and sympathetic dysregulation after formalin injection into the rat hind paw. Neuroscience 153: 501 – 506.en_US
dc.identifier.citedreferenceWhiteside G, Pomonis J, Kennedy J. 2013. An industry perspective on the role and utility of animal models of pain in drug discovery. Neurosci Lett 557: 65 – 72.en_US
dc.identifier.citedreferenceAbbott F, Ocvirk R, Najafee R, Franklin, K. 2002. Improving the efficiency of the formalin test. Pain 83: 561 – 569.en_US
dc.identifier.citedreferenceBoyette‐Davis J, Thompson C, Fuchs, P. 2008. Alterations in attentional mechanisms in response to acute inflammatory pain and morphine administration. Neuroscience 151: 558 – 563.en_US
dc.identifier.citedreferenceBushnell P. 1999. Detection of visual signals by rats: effects of signal intensity, event rate, and task type. Behav Processes 46: 141 – 150.en_US
dc.identifier.citedreferenceBushnell P, Oshiro W, Padnos B. 1997. Detection of visual signals by rats: effects of chlordiazepoxide and cholinergic and adrenergic drugs on sustained attention. Psychopharmacol 134: 230 – 241.en_US
dc.identifier.citedreferenceChaplan S, Bach F, Pogrel J, Chung J, Yaksh T. 1994. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53: 55 – 63.en_US
dc.identifier.citedreferenceCrombez G, Eccleston C, Baeyens F, Eelen P. 1997. Habituation and the interference of pain with task performance. Pain 70: 149 – 154.en_US
dc.identifier.citedreferenceEccleston C. 1994. Chronic pain and attention: a cognitive approach. Br J Clin Psychol 3:535 – 547.en_US
dc.identifier.citedreferenceEccleston C, Crombez G. 1999. Pain demands attention: a cognitive‐affective model of the interruptive function of pain. Psychol Bull 125: 356 – 366.en_US
dc.identifier.citedreferenceEllis J, Ellis K, Bartholomeusz C, Harrison B, Wesnes K, Erskine F, Vitetta L, Nathan P. 2006. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9: 175 – 189.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.