Show simple item record

Southwest Atlantic water mass evolution during the last deglaciation

dc.contributor.authorLund, D. C.en_US
dc.contributor.authorTessin, A. C.en_US
dc.contributor.authorHoffman, J. L.en_US
dc.contributor.authorSchmittner, A.en_US
dc.date.accessioned2015-07-01T20:56:31Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationLund, D. C.; Tessin, A. C.; Hoffman, J. L.; Schmittner, A. (2015). "Southwest Atlantic water mass evolution during the last deglaciation." Paleoceanography 30(5): 477-494.en_US
dc.identifier.issn0883-8305en_US
dc.identifier.issn1944-9186en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111970
dc.description.abstractThe rise in atmospheric CO2 during Heinrich Stadial 1 (HS1; 14.5–17.5 kyr B.P.) may have been driven by the release of carbon from the abyssal ocean. Model simulations suggest that wind‐driven upwelling in the Southern Ocean can liberate 13C‐depleted carbon from the abyss, causing atmospheric CO2 to increase and the δ13C of CO2 to decrease. One prediction of the Southern Ocean hypothesis is that water mass tracers in the deep South Atlantic should register a circulation response early in the deglaciation. Here we test this idea using a depth transect of 12 cores from the Brazil Margin. We show that records below 2300 m remained 13C‐depleted until 15 kyr B.P. or later, indicating that the abyssal South Atlantic was an unlikely source of light carbon to the atmosphere during HS1. Benthic δ18O results are consistent with abyssal South Atlantic isolation until 15 kyr B.P., in contrast to shallower sites. The depth dependent timing of the δ18O signal suggests that correcting δ18O for ice volume is problematic on glacial terminations. New data from 2700 to 3000 m show that the deep SW Atlantic was isotopically distinct from the abyss during HS1. As a result, we find that mid‐depth δ13C minima were most likely driven by an abrupt drop in δ13C of northern component water. Low δ13C at the Brazil Margin also coincided with an ~80‰ decrease in Δ14C. Our results are consistent with a weakening of the Atlantic meridional overturning circulation and point toward a northern hemisphere trigger for the initial rise in atmospheric CO2 during HS1.Key PointsDeep SW Atlantic was unlikely source of light carbon to atmosphere during HS1Mid‐depth isotopic anomalies due to change in northern component waterNorthern component water had robust influence in South Atlantic during HS1en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherstable isotopesen_US
dc.subject.otherSouth Atlanticen_US
dc.subject.otherdeglaciationen_US
dc.subject.othercarbon dioxideen_US
dc.titleSouthwest Atlantic water mass evolution during the last deglaciationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111970/1/palo20190.pdf
dc.identifier.doi10.1002/2014PA002657en_US
dc.identifier.sourcePaleoceanographyen_US
dc.identifier.citedreferenceSigman, D. M., and E. A. Boyle ( 2000 ), Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407 ( 6806 ), 859 – 869.en_US
dc.identifier.citedreferenceSchlitzer, R. ( 2000 ), Ellectronic atlas of WOCE hydrographic and tracer data now available, Eos Trans. AGU, 81 ( 5 ), 45 – 45, doi: 10.1029/00EO00028.en_US
dc.identifier.citedreferenceSchmitt, J., et al. ( 2012 ), Carbon isotope constraints on the deglacial CO 2 rise from ice cores, Science, 336 ( 6082 ), 711 – 714.en_US
dc.identifier.citedreferenceSchmittner, A., and D. C. Lund ( 2015 ), Early deglacial Atlantic overturning decline and its role in atmospheric CO2 rise inferred from carbon isotopes (δ13C), Clim. Past, 1, 135 – 152, doi: 10.5194/cp-11-135-2015.en_US
dc.identifier.citedreferenceShakun, J. D., P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Y. Liu, B. Otto‐Bliesner, A. Schmittner, and E. Bard ( 2012 ), Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484 ( 7392 ), 49 – 54.en_US
dc.identifier.citedreferenceSlowey, N. C., and W. B. Curry ( 1995 ), Glacial‐interglacial differences in circulation and carbon cycling within the upper western North‐Atlantic, Paleoceanography, 10, 715 – 732, doi: 10.1029/95PA01166.en_US
dc.identifier.citedreferenceSortor, R. N., and D. C. Lund ( 2011 ), No evidence for a deglacial intermediate water Delta C‐14 anomaly in the SW Atlantic, Earth Planet. Sci. Lett., 310 ( 1–2 ), 65 – 72.en_US
dc.identifier.citedreferenceSouthon, J., A. L. Noronha, H. Cheng, R. L. Edwards, and Y. J. Wang ( 2012 ), A high‐resolution record of atmospheric C‐14 based on Hulu Cave speleothem H82, Quat. Sci. Rev., 33, 32 – 41.en_US
dc.identifier.citedreferenceSpero, H. J., and D. W. Lea ( 2002 ), The cause of carbon isotope minimum events on glacial terminations, Science, 296 ( 5567 ), 522 – 525.en_US
dc.identifier.citedreferenceStern, J. V., and L. E. Lisiecki ( 2013 ), North Atlantic circulation and reservoir age changes over the past 41,000 years, Geophys. Res. Lett., 40, 3693 – 3697, doi: 10.1002/grl.50679.en_US
dc.identifier.citedreferenceStuiver, M., and H. G. Ostlund ( 1980 ), Geosecs Atlantic radiocarbon, Radiocarbon, 22, 1 – 24.en_US
dc.identifier.citedreferenceTessin, A. C., and D. C. Lund ( 2013 ), Isotopically depleted carbon in the mid‐depth South Atlantic during the last deglaciation, Paleoceanography, 28, 296 – 306, doi: 10.1002/palo.20026.en_US
dc.identifier.citedreferenceThompson, W. G., and S. L. Goldstein ( 2006 ), A radiometric calibration of the SPECMAP timescale, Quat. Sci. Rev., 25 ( 23–24 ), 3207 – 3215.en_US
dc.identifier.citedreferenceThornalley, D. J. R., I. N. McCave, and H. Elderfield ( 2010 ), Freshwater input and abrupt deglacial climate change in the North Atlantic, Paleoceanography, 25, PA1201, doi: 10.1029/2009PA001772.en_US
dc.identifier.citedreferenceThornalley, D. J. R., S. Barker, W. S. Broecker, H. Elderfield, and I. N. McCave ( 2011 ), The deglacial evolution of North Atlantic deep convection, Science, 331, 202 – 205.en_US
dc.identifier.citedreferenceTschumi, T., F. Joos, M. Gehlen, and C. Heinze ( 2011 ), Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO 2 rise, Clim. Past, 7 ( 3 ), 771 – 800.en_US
dc.identifier.citedreferenceVeres, D., et al. ( 2012 ), The Antarctic ice core chronology (AICC2012): An optimized multi‐parameter and multi‐site dating approach for the last 120 thousand years, Clim. Past Discuss., 8, 6011 – 6049.en_US
dc.identifier.citedreferenceWaelbroeck, C., L. C. Skinner, L. Labeyrie, J. C. Duplessy, E. Michel, N. V. Riveiros, J. M. Gherardi, and F. Dewilde ( 2011 ), The timing of deglacial circulation changes in the Atlantic, Paleoceanography, 26, PA3213, doi: 10.1029/2010PA002007.en_US
dc.identifier.citedreferenceYu, J. M., W. S. Broecker, H. Elderfield, Z. D. Jin, J. McManus, and F. Zhang ( 2010 ), Loss of carbon from the deep sea since the Last Glacial Maximum, Science, 330 ( 6007 ), 1084 – 1087.en_US
dc.identifier.citedreferenceZahn, R., and A. Stuber ( 2002 ), Suborbital intermediate water variability inferred from paired benthic foraminiferal Cd/Ca and delta C‐13 in the tropical West Atlantic and linking with North Atlantic climates, Earth Planet. Sci. Lett., 200 ( 1–2 ), 191 – 205.en_US
dc.identifier.citedreferenceZahn, R., J. Schonfeld, H. R. Kudrass, M. H. Park, H. Erlenkeuser, and P. Grootes ( 1997 ), Thermohaline instability in the North Atlantic during meltwater events: Stable isotope and ice‐rafted detritus records from core SO75‐26KL, Portuguese margin, Paleoceanography, 12, 696 – 710, doi: 10.1029/97PA00581.en_US
dc.identifier.citedreferenceAdkins, J. F., K. McIntyre, and D. P. Schrag ( 2002 ), The salinity, temperature, and delta O‐18 of the glacial deep ocean, Science, 298 ( 5599 ), 1769 – 1773.en_US
dc.identifier.citedreferenceAnderson, R. F., S. Ali, L. I. Bradtmiller, S. H. H. Nielsen, M. Q. Fleisher, B. E. Anderson, and L. H. Burckle ( 2009 ), Wind‐driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2, Science, 323 ( 5920 ), 1443 – 1448.en_US
dc.identifier.citedreferenceAngulo, R. J., M. C. de Souza, P. J. Reimer, and S. K. Sasaoka ( 2005 ), Reservoir effect of the southern and southeastern Brazilian coast, Radiocarbon, 47 ( 1 ), 67 – 73.en_US
dc.identifier.citedreferenceBroecker, W. S. ( 1982 ), Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46 ( 10 ), 1689 – 1705.en_US
dc.identifier.citedreferenceBurke, A., and L. F. Robinson ( 2012 ), The Southern Ocean's role in carbon exchange during the last deglaciation, Science, 335 ( 6068 ), 557 – 561.en_US
dc.identifier.citedreferenceClark, P. U., A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X. Mitrovica, S. W. Hostetler, and A. M. McCabe ( 2009 ), The Last Glacial Maximum, Science, 325 ( 5941 ), 710 – 714.en_US
dc.identifier.citedreferenceCleroux, C., P. Demenocal, and T. Guilderson ( 2011 ), Deglacial radiocarbon history of tropical Atlantic thermocline waters: Absence of CO 2 reservoir purging signal, Quat. Sci. Rev., 30 ( 15–16 ), 1875 – 1882.en_US
dc.identifier.citedreferenceCurry, W. B., and D. W. Oppo ( 2005 ), Glacial water mass geometry and the distribution of delta C‐13 of Sigma CO 2 in the western Atlantic Ocean, Paleoceanography, 20, PA1017, doi: 10.1029/2004PA001021.en_US
dc.identifier.citedreferenceCurry, W. B., J. C. Duplessy, L. D. Labeyrie, and N. J. Shackleton ( 1988 ), Changes in the distribution of d13C of deep water CO 2 between the last glaciation and Holocene, Paleoceanography, 3, 317 – 341, doi: 10.1029/PA003i003p00317.en_US
dc.identifier.citedreferenceCutler, K. B., R. L. Edwards, F. W. Taylor, H. Cheng, J. Adkins, C. D. Gallup, P. M. Cutler, G. S. Burr, and A. L. Bloom ( 2003 ), Rapid sea‐level fall and deep‐ocean temperature change since the last interglacial period, Earth Planet. Sci. Lett., 206 ( 3–4 ), 253 – 271.en_US
dc.identifier.citedreferenceDokken, T. M., and E. Jansen ( 1999 ), Rapid changes in the mechanism of ocean convection during the last glacial period, Nature, 401 ( 6752 ), 458 – 461.en_US
dc.identifier.citedreferenceDuplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel ( 1988 ), Deep water source variations during the last climatic cycle and their impact on the global deep water circulation, Paleoceanography, 3, 343 – 360.en_US
dc.identifier.citedreferenceElderfield, H., J. Yu, P. Anand, T. Kiefer, and B. Nyland ( 2006 ), Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis, Earth Planet. Sci. Lett., 250 ( 3–4 ), 633 – 649.en_US
dc.identifier.citedreferenceGebhardt, H., M. Sarnthein, P. M. Grootes, T. Kiefer, H. Kuehn, F. Schmieder, and U. Rohl ( 2008 ), Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V, Paleoceanography, 23, PA4212, doi: 10.1029/2007PA001513.en_US
dc.identifier.citedreferenceGherardi, J. M., L. Labeyrie, S. Nave, R. Francois, J. F. McManus, and E. Cortijo ( 2009 ), Glacial‐interglacial circulation changes inferred from Pa‐231/Th‐230 sedimentary record in the North Atlantic region, Paleoceanography, 24, PA2204, doi: 10.1029/2008PA001696.en_US
dc.identifier.citedreferenceHerguera, J. C., T. Herbert, M. Kashgarian, and C. Charles ( 2010 ), Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes, Quat. Sci. Rev., 29 ( 9–10 ), 1228 – 1245.en_US
dc.identifier.citedreferenceHoffman, J. L., and D. C. Lund ( 2012 ), Refining the stable isotope budget for Antarctic Bottom Water: New foraminiferal data from the abyssal southwest Atlantic, Paleoceanography, 27, PA1213, doi: 10.1029/2011PA002216.en_US
dc.identifier.citedreferenceKallel, N., L. D. Labeyrie, A. Juilletleclerc, and J. C. Duplessy ( 1988 ), A deep hydrological front between intermediate and deep‐water masses in the glacial Indian Ocean, Nature, 333 ( 6174 ), 651 – 655.en_US
dc.identifier.citedreferenceKeigwin, L. D., and E. A. Boyle ( 2008 ), Did North Atlantic overturning halt 17,000 years ago?, Paleoceanography, 23, PA1101, doi: 10.1029/2007PA001500.en_US
dc.identifier.citedreferenceKey, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T. H. Peng ( 2004 ), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi: 10.1029/2004GB002247.en_US
dc.identifier.citedreferenceLippold, J., J. Grutzner, D. Winter, Y. Lahaye, A. Mangini, and M. Christl ( 2009 ), Does sedimentary Pa‐231/Th‐230 from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation?, Geophys. Res. Lett., 36, L12601, doi: 10.1029/2009GL038068.en_US
dc.identifier.citedreferenceLund, D. C., J. F. Adkins, and R. Ferrari ( 2011a ), Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing, Paleoceanography, 26, PA1213, doi: 10.1029/2010PA001938.en_US
dc.identifier.citedreferenceLund, D. C., A. C. Mix, and J. Southon ( 2011b ), Increased ventilation age of the deep northeast Pacific Ocean during the last deglaciation, Nat. Geosci., 4, 771 – 774.en_US
dc.identifier.citedreferenceMarcott, S. A., et al. ( 2011 ), Ice‐shelf collapse from subsurface warming as a trigger for Heinrich events, Proc. Natl. Acad. Sci. U.S.A., 108 ( 33 ), 13,415 – 13,419.en_US
dc.identifier.citedreferenceMarshall, J., and K. Speer ( 2012 ), Closure of the meridional overturning circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171 – 180.en_US
dc.identifier.citedreferenceMcManus, J. F., R. Francois, J. M. Gherardi, L. D. Keigwin, and S. Brown‐Leger ( 2004 ), Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428 ( 6985 ), 834 – 837.en_US
dc.identifier.citedreferenceMonnin, E., A. Indermuhle, A. Dallenbach, J. Fluckiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J. M. Barnola ( 2001 ), Atmospheric CO 2 concentrations over the last glacial termination, Science, 291 ( 5501 ), 112 – 114.en_US
dc.identifier.citedreferenceMonnin, E., et al. ( 2004 ), Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO 2 in the Taylor Dome, Dome C and DML ice cores, Earth Planet. Sci. Lett., 224 ( 1–2 ), 45 – 54.en_US
dc.identifier.citedreferenceOppo, D. W., and W. B. Curry ( 2012 ), Deep Atlantic circulation during the Last Glacial Maximum and deglaciation, Nat. Educ. Knowl., 3 ( 10 ), 1.en_US
dc.identifier.citedreferenceOppo, D. W., and R. G. Fairbanks ( 1989 ), Carbon isotope composition of tropical surface water during the past 22,000 years, Paleoceanography, 4, 333 – 351, doi: 10.1029/PA004i004p00333.en_US
dc.identifier.citedreferenceOppo, D. W., W. B. Curry, and J. McManus ( 2015 ), What do benthic δ 13 C and δ 18 O data tell us about Atlantic circulation during Heinrich Stadial 1?, Paleoceanography, doi: 10.1002/2014PA002667.en_US
dc.identifier.citedreferenceOstermann, D. R., and W. B. Curry ( 2000 ), Calibration of stable isotopic data: An enriched delta O‐18 standard used for source gas mixing detection and correction, Paleoceanography, 15, 353 – 360, doi: 10.1029/1999PA000411.en_US
dc.identifier.citedreferenceParrenin, F., V. Masson‐Delmotte, P. Kohler, D. Raynaud, D. Paillard, J. Schwander, C. Barbante, A. Landais, A. Wegner, and J. Jouzel ( 2013 ), Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming, Science, 339 ( 6123 ), 1060 – 1063.en_US
dc.identifier.citedreferencePeck, V. L., I. R. Hall, R. Zahn, H. Elderfield, F. Grousset, S. R. Hemming, and J. D. Scourse ( 2006 ), High resolution evidence for linkages between NW European ice sheet instability and Atlantic meridional overturning circulation, Earth Planet. Sci. Lett., 243 ( 3–4 ), 476 – 488.en_US
dc.identifier.citedreferencePraetorius, S. K., J. F. McManus, D. W. Oppo, and W. B. Curry ( 2008 ), Episodic reductions in bottom‐water currents since the last ice age, Nat. Geosci., 1 ( 7 ), 449 – 452.en_US
dc.identifier.citedreferenceReimer, P. J., et al. ( 2013 ), Intcal13 and marine13 radiocarbon age calibration curves 0‐50,000 years cal BP, Radiocarbon, 55 ( 4 ), 1869 – 1887.en_US
dc.identifier.citedreferenceRickaby, R. E. M., and H. Elderfield ( 2005 ), Evidence from the high‐latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation, Geochem. Geophys. Geosyst., 6, Q05001, doi: 10.1029/2004GC000858.en_US
dc.identifier.citedreferenceRobinson, L. F., J. F. Adkins, L. D. Keigwin, J. Southon, D. P. Fernandez, S. L. Wang, and D. S. Scheirer ( 2005 ), Radiocarbon variability in the western North Atlantic during the last deglaciation, Science, 310 ( 5753 ), 1469 – 1473.en_US
dc.identifier.citedreferenceRuhlemann, C., S. Mulitza, G. Lohmann, A. Paul, M. Prange, and G. Wefer ( 2004 ), Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation, Paleoceanography, 19, PA1025, doi: 10.1029/2003PA000948.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.