Show simple item record

Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis

dc.contributor.authorFatichi, Simoneen_US
dc.contributor.authorKatul, Gabriel G.en_US
dc.contributor.authorIvanov, Valeriy Y.en_US
dc.contributor.authorPappas, Christoforosen_US
dc.contributor.authorPaschalis, Athanasiosen_US
dc.contributor.authorConsolo, Adaen_US
dc.contributor.authorKim, Jonghoen_US
dc.contributor.authorBurlando, Paoloen_US
dc.date.accessioned2015-07-01T20:56:50Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationFatichi, Simone; Katul, Gabriel G.; Ivanov, Valeriy Y.; Pappas, Christoforos; Paschalis, Athanasios; Consolo, Ada; Kim, Jongho; Burlando, Paolo (2015). "Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis." Water Resources Research 51(5): 3505-3524.en_US
dc.identifier.issn0043-1397en_US
dc.identifier.issn1944-7973en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111997
dc.description.abstractAn expression that separates biotic and abiotic controls on the temporal dynamics of the soil moisture spatial coefficient of variation Cv(θ) was explored via numerical simulations using a mechanistic ecohydrological model, Tethys‐Chloris. Continuous soil moisture spatiotemporal dynamics at an exemplary hillslope domain were computed for six case studies characterized by different climate and vegetation cover and for three configurations of soil properties. It was shown that abiotic controls largely exceed their biotic counterparts in wet climates. Biotic controls on Cv(θ) were found to be more pronounced in Mediterranean climates. The relation between Cv(θ) and spatial mean soil moisture θ¯ was found to be unique in wet locations, regardless of the soil properties. For the case of homogeneous soil texture, hysteretic cycles between Cv(θ) and θ¯ were observed in all Mediterranean climate locations considered here and to a lesser extent in a deciduous temperate forest. Heterogeneity in soil properties increased Cv(θ) to values commensurate with field observations and weakened signatures of hysteresis at all of the studied locations. This finding highlights the role of site‐specific heterogeneities in hiding or even eliminating the signature of climatic and biotic controls on Cv(θ), thereby offering a new perspective on causes of confounding results reported across field experiments.Key Points:Abiotic controls are larger than biotic and are dominant in wet climatesHysteresis is stronger for Mediterranean than wet climatesHeterogeneity in soil properties weakens signatures of hysteresisen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherevapotranspirationen_US
dc.subject.otherhillslope hydrologyen_US
dc.subject.othersoil propertiesen_US
dc.subject.otherecohydrologyen_US
dc.subject.othersoil moistureen_US
dc.subject.othersubsurface flowen_US
dc.titleAbiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111997/1/wrcr21456.pdf
dc.identifier.doi10.1002/2014WR016102en_US
dc.identifier.sourceWater Resources Researchen_US
dc.identifier.citedreferenceRobinson, D. A., C. S. Campbell, J. W. Hopmans, B. K. Hornbuckle, S. B. Jones, R. Knight, F. Ogden, J. Selker, and O. Wendroth ( 2008 ), Soil moisture measurements for ecological and hydrological watershed scale observatories: A review, Vadose Zone J., 7, 358 – 389, doi: 10.2136/vzj2007.0143.en_US
dc.identifier.citedreferenceRosenbaum, U., H. R. Bogena, M. Herbst, J. A. Huisman, T. J. Peterson, A. Weuthen, A. W. Western, and H. Vereecken ( 2012 ), Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale, Water Resour. Res., 48, W10544, doi: 10.1029/2011WR011518.en_US
dc.identifier.citedreferenceRyu, Y., D. D. Baldocchi, S. Ma, and T. Hehn ( 2008 ), Interannual variability of evapotranspiration and energy exchange over an annual grassland in California, J. Geophys. Res., 113, D09104, doi: 10.1029/2007JD009263.en_US
dc.identifier.citedreferenceSaghafian, B., P. Julien, and F. Ogden ( 1995 ), Similarity in catchment response 1. Stationary rainstorms, Water Resour. Res., 31 ( 6 ), 1533 – 1541, doi: 10.1029/95WR00518.en_US
dc.identifier.citedreferenceSaxton, K. E., and W. J. Rawls ( 2006 ), Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Sci. Soc. Am. J., 70, 1569 – 1578, doi: 10.2136/sssaj2005.0117.en_US
dc.identifier.citedreferenceScanlon, T. M., K. K. Caylor, S. A. Levin, and I. Rodriguez‐Iturbe ( 2007 ), Positive feedbacks promote power‐law clustering of Kalahari vegetation, Nature, 449, 209 – 212, doi: 10.1038/nature06060.en_US
dc.identifier.citedreferenceSela, S., T. Svoray, and S. Assouline ( 2012 ), Soil water content variability at the hillslope scale: Impact of surface sealing, Water Resour. Res, 48, W03522, doi: 10.1029/2011WR011297.en_US
dc.identifier.citedreferenceSeneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär ( 2006 ), Land‐atmosphere coupling and climate change in Europe, Nature, 443, 205 – 209.en_US
dc.identifier.citedreferenceSeneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling ( 2010 ), Investigating soil moisture‐climate interactions in a changing climate: A review, Earth Sci. Rev., 99 ( 3–4 ), 125 – 161.en_US
dc.identifier.citedreferenceSeneviratne, S. I., et al. ( 2012 ), Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event, Water Resour. Res., 48, W06526, doi: 10.1029/2011WR011749.en_US
dc.identifier.citedreferenceTague, C., L. Band, S. Kenworthy, and D. Tenebaum ( 2010 ), Plot‐ and watershed‐scale soil moisture variability in a humid piedmont watershed, Water Resour. Res., 46, W12541, doi: 10.1029/2009WR008078.en_US
dc.identifier.citedreferenceTeuling, A. J., and P. A. Troch ( 2005 ), Improved understanding of soil moisture variability dynamics, Geophys. Res. Lett., 32, L05404, doi: 10.1029/2004GL021935.en_US
dc.identifier.citedreferenceTeuling, A. J., F. Hupet, R. Uijlenhoet, and P. A. Troch ( 2007a ), Climate variability effects on spatial soil moisture dynamics, Geophys. Res. Lett., 34, L06406, doi: 10.1029/2006GL029080.en_US
dc.identifier.citedreferenceTeuling, A. J., R. Uijlenhoet, R. Hurkmans, O. Merlin, R. Panciera, J. P. Walker, and P. A. Troch ( 2007b ), Dry‐end surface soil moisture variability during NAFE'06, Geophys. Res. Lett., 34, L17402, doi: 10.1029/2007GL031001.en_US
dc.identifier.citedreferenceTeuling, A. J., I. Lehner, J. W. Kirchner, and S. I. Seneviratne ( 2010 ), Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment, Water Resour. Res., 46, W10502, doi: 10.1029/2009WR008777.en_US
dc.identifier.citedreferenceTirone, G. ( 2003 ), Stima del bilanco del carbonio di due ecosistemi forestali Mediterranei. Confronto tra una lecceta e una pineta, PhD thesis, Dep. of For. Sci. and Resour., Univ. of Tuscia, Viterbo, Italy.en_US
dc.identifier.citedreferenceVachaud, G. A., S. A. Passerat, de, P. Balabanis, and M. Vauclin ( 1985 ), Temporal stability of spatially measured soil water probability density function, Soil Sci. Soc. Am. J., 49, 822 – 828, doi: 10.2136/sssaj1985.03615995004900040006.en_US
dc.identifier.citedreferenceVanderlinden, K., H. Vereecken, H. Hardelauf, M. Herbst, G. Martinez, M. Cosh, and Y. Pachepsky ( 2012 ), Temporal stability of soil water contents: A review of data and analyses, Vadose Zone J., 11 ( 4 ), doi: 10.2136/vzj2011.0178.en_US
dc.identifier.citedreferenceVereecken, H., J. A. Huisman, H. R. Bogena, J. Vanderborght, J. A. Vrugt, and J. W. Hopmans ( 2008 ), On the value of soil moisture measurements in vadose zone hydrology: A review, Water Resour. Res., 44, W00D06, doi: 10.1029/2008WR006829.en_US
dc.identifier.citedreferenceVivoni, E. R., J. C. Rodrîguez, and C. J. Watts ( 2010 ), On the spatiotemporal variability of soil moisture and evapotranspiration in a mountainous basin within the North American monsoon region, Water Resources Res., 46, W02509, doi: 10.1029/2009WR008240.en_US
dc.identifier.citedreferenceWang, Y.‐P., and R. Leuning ( 1998 ), A two‐leaf model for canopy conductance, photosynthesis and portioning of available energy. I. Model description and comparison with a multi‐layered model, Agric. For. Meteorol., 91, 89 – 111.en_US
dc.identifier.citedreferenceWestern, A., S. Zhou, R. Grayson, T. McMahon, G. Blöschl, and D. Wilson ( 2004 ), Spatial correlation of soil moisture in small catchments and its relation to dominant spatial hydrological processes, J. Hydrol., 286, 113 – 134.en_US
dc.identifier.citedreferenceWestern, A. W., and G. Blöschl ( 1999 ), On the spatial scaling of soil moisture, J. Hydrol., 217, 203 – 224.en_US
dc.identifier.citedreferenceWestern, A. W., G. Blöschl, and R. B. Grayson ( 1998 ), Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment, J. Hydrol., 205, 20 – 37.en_US
dc.identifier.citedreferenceWestern, A. W., R. B. Grayson, G. Blöschl, G. R. Willgoose, and T. A. McMahon ( 1999 ), Observed spatial organization of soil moisture and its relation to terrain indices, Water Resour. Res., 35 ( 3 ), 797 – 810.en_US
dc.identifier.citedreferenceWilson, D. J., A. W. Western, and R. B. Grayson ( 2004 ), Identifying and quantifying sources of variability in temporal and spatial soil moisture observations, Water Resour. Res., 40, W02507, doi: 10.1029/2003WR002306.en_US
dc.identifier.citedreferenceXu, L., and D. D. Baldocchi ( 2004 ), Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California, Agric. For. Meteorol., 1232, 79 – 96, doi: 10.1016/j.agrformet.2003.10.004.en_US
dc.identifier.citedreferenceAlbertson, J. D., and N. Montaldo ( 2003 ), Temporal dynamics of soil moisture variability. 1. Theoretical basis, Water Resour. Res., 39 ( 10 ), 1274, doi: 10.1029/2002WR001616.en_US
dc.identifier.citedreferenceAnctil, F., R. Mathieu, L. E. Parent, A. A. Viau, M. Sbih, and M. Hessami ( 2002 ), Geostatistics of near‐surface moisture in bare cultivated organic soils, J. Hydrol., 260, 30 – 37.en_US
dc.identifier.citedreferenceArora, V. K., and G. J. Boer ( 2005 ), A parameterization of leaf phenology for the terrestrial ecosystem component of climate models, Global Change Biol., 11 ( 1 ), 39 – 59.en_US
dc.identifier.citedreferenceAssouline, S., and Y. Mualem ( 2006 ), Runoff from heterogeneous small bare catchments during soil surface sealing, Water Resour. Res., 42, W12405, doi: 10.1029/2005WR004592.en_US
dc.identifier.citedreferenceBaldocchi, D. D., L. Xu, and N. Kiang ( 2004 ), How plant functional‐type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak‐grass savanna and an annual grassland, Agric. For. Meteorol., 123, 13 – 39, doi: 10.1016/j.agrformet.2003.11.006.en_US
dc.identifier.citedreferenceBonan, G. B., P. J. Lawrence, K. W. Oleson, S. Levis, M. Jung, M. Reichstein, D. M. Lawrence, and S. C. Swenson ( 2011 ), Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data, J. Geophys. Res., 116, G02014, doi: 10.1029/2010JG001593.en_US
dc.identifier.citedreferenceBrocca, L., F. Melone, T. Moramarco, and R. Morbidelli ( 2010 ), Spatial‐temporal variability of soil moisture and its estimation across scales, Water Resour. Res., 46, W02516, doi: 10.1029/2009WR008016.en_US
dc.identifier.citedreferenceBrocca, L., R. Morbidelli, F. Melone, and T. Moramarco ( 2007 ), Soil moisture spatial variability in experimental areas of central Italy, J. Hydrol., 333, 356 – 373.en_US
dc.identifier.citedreferenceBrocca, L., T. Tullo, F. Melone, T. Moramarco, and R. Morbidelli ( 2012 ), Catchment scale soil moisture spatial‐temporal variability, J. Hydrol., 422–423, 63 – 75.en_US
dc.identifier.citedreferenceBrocca, L., G. Zucco, H. Mittelbach, T. Moramarco, and S. I. Seneviratne ( 2014 ), Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide, Water Resour. Res., 50, 5560 – 5576, doi: 10.1002/2014WR015684.en_US
dc.identifier.citedreferenceChiesi, M., F. Maselli, M. Moriondo, L. Fibbi, M. Bindi, and S. Running ( 2007 ), Application of BIOME‐BGC to simulate Mediterranean forest processes, Ecol. Modell., 206, 179 – 190, doi: 10.1016/j.ecolmodel.2007.03.032.en_US
dc.identifier.citedreferenceChoi, M., and J. M. Jacobs ( 2007 ), Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints, Adv. Water Res., 30, 883 – 896.en_US
dc.identifier.citedreferenceChoi, M., J. M. Jacobs, and M. H. Cosh ( 2007 ), Scaled spatial variability of soil moisture fields, Geophys. Res. Lett., 34, L01401, doi: 10.1029/2006GL028247.en_US
dc.identifier.citedreferenceChurakova (Sidorova), O. V., W. Eugster, S. Etzold, P. Cherubini, S. Zielis, M. Saurer, R. Siegwolf, and N. Buchmann ( 2014 ), Increasing relevance of spring temperatures for Norway spruce trees in Davos, Switzerland, after the 1950s, Trees, 28, 183 – 191.en_US
dc.identifier.citedreferenceCosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn ( 1984 ), A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20 ( 6 ), 682 – 690.en_US
dc.identifier.citedreferenceCosh, M., T. Jackson, S. Moran, and R. Bindlish ( 2008 ), Temporal persistence and stability of surface soil moisture in a semi‐arid watershed, Remote Sens. Environ., 112 ( 2 ), 304 – 313.en_US
dc.identifier.citedreferenceCrow, W. T., D. Ryu, and J. S. Famiglietti ( 2005 ), Upscaling of field‐scale soil moisture measurements using distributed land surface modeling, Adv. i Water Resour., 28, 1 – 14.en_US
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, C. M. Gough, H. P. Schmid, H. B. Su, and B. D. Bovard ( 2005 ), Respiratory carbon losses and the carbon‐use efficiency of a northern hardwood forest, 1999–2003, New Phytol., 167 ( 2 ), 437 – 455.en_US
dc.identifier.citedreferenceDirmeyer, P. A., R. D. Koster, and Z. Guo ( 2006 ), Do global models properly represent the feedback between land and atmosphere?, J. Hydrometeorol., 7, 1177 – 1198.en_US
dc.identifier.citedreferenceDorigo, W. A., et al. ( 2011 ), The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15 ( 5 ), 1675 – 1698.en_US
dc.identifier.citedreferenceDorigo, W. A., A. Xaver, M. Vreugdenhil, A. Gruber, A. Hegyiová, A. D. Sanchis‐Dufau, D. Zamojski, C. Cordes, W. Wagner, and M. Drusch ( 2013 ), Global automated quality control of in situ soil moisture data from the International Soil Moisture Network, Vadose Zone J., 12 ( 3 ), doi: 10.2136/vzj2012.0097.en_US
dc.identifier.citedreferenceElsenbeer, H., K. Cassel, and J. Castro ( 1992 ), Spatial analysis of soil hydraulic conductivity in a tropical rain forest catchment, Water Resour. Res., 28 ( 12 ), 3201 – 3214.en_US
dc.identifier.citedreferenceEmmerich, W. E., and C. L. Verdugo ( 2008 ), Long‐term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S09, doi: 10.1029/2006WR005693.en_US
dc.identifier.citedreferenceEtzold, S., N. K. Ruehr, R. Zweifel, M. Dobbertin, A. Zingg, P. Pluess, R. Häsler, W. Eugster, and N. Buchmann ( 2011 ), The carbon balance of two contrasting mountain forest ecosystems in Switzerland: Similar annual trends, but seasonal differences, Ecosystems, 14 ( 8 ), 1289 – 1309, doi: 10.1007/s10021-011-9481-3.en_US
dc.identifier.citedreferenceFamiglietti, J. S., J. A. Devereaux, C. Laymon, T. Tsegaye, P. R. Houser, T. J. Jackson, S. T. Graham, M. Rodell, and P. J. van Oevelen ( 1999 ), Ground‐based investigation of spatial‐temporal soil moisture variability within remote sensing footprints during Southern Great Plains 1997 (SGP97) Hydrology Experiment, Water Resour. Res., 35 ( 6 ), 1839 – 1851.en_US
dc.identifier.citedreferenceFamiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson ( 2008 ), Field observations of soil moisture variability across scales, Water Resour. Res., 44, W01423, doi: 10.1029/2006WR005804.en_US
dc.identifier.citedreferenceFarquhar, G. D., S. V. Caemmerer, and J. A. Berry ( 1980 ), A biochemical model of photosynthetic CO 2 assimilation in leaves of C3 species, Planta, 149, 78 – 90.en_US
dc.identifier.citedreferenceFatichi, S. ( 2010 ), The modeling of hydrological cycle and its interaction with vegetation in the framework of climate change, PhD thesis, Univ. of Firenze, Italy.en_US
dc.identifier.citedreferenceFatichi, S., and V. Y. Ivanov ( 2014 ), Interannual variability of evapotranspiration and vegetation productivity, Water Resour. Res., 50, 3275 – 3294, doi: 10.1002/2013WR015044.en_US
dc.identifier.citedreferenceFatichi, S., and S. Leuzinger ( 2013 ), Reconciling observations with modeling: The fate of water and carbon allocation in a mature deciduous forest exposed to elevated CO 2, Agric. For. Meteorol., 174–175, 144 – 157, doi: 10.1016/j.agrformet.2013.02.005.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2012a ), A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments. 1 Theoretical framework and plot‐scale analysis, J. Adv. Model. Earth Syst., 4, M05002, doi: 10.1029/2011MS000086.en_US
dc.identifier.citedreferenceFatichi, S., V. Y. Ivanov, and E. Caporali ( 2012b ), A mechanistic ecohydrological model to investigate complex interactions in cold and warm water‐controlled environments. 2. Spatiotemporal analyses, J. Adv. Model. Earth Syst., 4, M05003, doi: 10.1029/2011MS000087.en_US
dc.identifier.citedreferenceFatichi, S., M. J. Zeeman, J. Fuhrer, and P. Burlando ( 2014 ), Ecohydrological effects of management on subalpine grasslands: From local to catchment scale, Water Resour. Res., 50, 148 – 164, doi: 10.1002/2013WR014535.en_US
dc.identifier.citedreferenceGaur, N., and B. P. Mohanty ( 2013 ), Evolution of physical controls for soil moisture in humid and subhumid watersheds, Water Resour. Res., 49, 1244 – 1258, doi: 10.1002/wrcr.20069.en_US
dc.identifier.citedreferenceGough, C. M., C. E. Flower, C. S. Vogel, D. Dragoni, and P. S. Curtis ( 2009 ), Whole‐ecosystem labile carbon production in a north temperate deciduous forest, Agric. For. Meteorol., 149, 1531 – 1540, doi: 10.1016/j.agrformet.2009.04.006.en_US
dc.identifier.citedreferenceGough, C. M., B. S. Hardiman, L. E. Nave, G. Bohrer, K. D. Maurer, C. S. Vogel, K. J. Nadelhoffer, and P. S. Curtis ( 2013 ), Sustained carbon uptake and storage following moderate disturbance in a great lakes forest, Ecol. Appl., 23 ( 5 ), 1202 – 1215.en_US
dc.identifier.citedreferenceGranier, A., et al. ( 2007 ), Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003, Agric. For. Meteorol., 143, 123 – 145.en_US
dc.identifier.citedreferenceGrayson, R. B., and A. W. Western ( 1998 ), Towards areal estimation of soil water content from point measurements: Time and space stability of mean response, J. Hydrol., 207, 68 – 82, doi: 10.1016/S0022-1694(98)00096-1.en_US
dc.identifier.citedreferenceGrayson, R. B., A. W. Western, F. H. S. Chiew, and G. Blöschl ( 1997 ), Preferred states in spatial soil moisture patterns: Local and nonlocal controls, Water Resour. Res., 33 ( 12 ), 2897 – 2908.en_US
dc.identifier.citedreferenceGruber, A., W. A. Dorigo, S. Zwieback, A. Xaver, and W. Wagner ( 2013 ), Characterizing coarse‐scale representativeness of in‐situ soil moisture measurements from the International Soil Moisture Network, Vadose Zone J., 12 ( 2 ), doi: 10.2136/vzj2012.0170.en_US
dc.identifier.citedreferenceHe, L., V. Y. Ivanov, G. Bohrer, J. E. Thomsen, C. S. Vogel, and M. Moghaddam ( 2013 ), Temporal dynamics of soil moisture in a northern temperate mixed successional forest after a prescribed intermediate disturbance, Agric. For. Meteorol., 180, 22 – 33, doi: 10.1016/j.agrformet.2013.04.014.en_US
dc.identifier.citedreferenceHe, L., V. Y. Ivanov, G. Bohrer, K. D. Maurer, C. S. Vogel, and M. Moghaddam ( 2014 ), Effects of fine‐scale soil moisture and canopy heterogeneity on energy and water fluxes in a northern temperate mixed forest, Agric. For. Meteorol., 184, 243 – 256, doi: 10.1016/j.agrformet.2013.10.006.en_US
dc.identifier.citedreferenceHopp, L., C. Harman, S. Desilets, C. Graham, J. McDonnell, and P. A. Troch ( 2009 ), Hillslope hydrology under glass: Confronting fundamental questions of soil‐water‐biota co‐evolution at Biosphere 2, Hydrol. Earth Syst. Sci., 13 ( 11 ), 2105 – 2118.en_US
dc.identifier.citedreferenceHu, W., M. Shao, F. Han, K. Reichardt, and J. Tan ( 2010 ), Watershed scale temporal stability of soil water content, Geoderma, 158, 181 – 198.en_US
dc.identifier.citedreferenceHuxman, T., P. Troch, J. Chorover, D. D. Breshears, S. Saleska, X. Z. J. Pelletier, and J. Espeleta ( 2009 ), The hills are alive: Earth science in a controlled environment, Eos Trans. AGU, 34 ( 90 ), 120.en_US
dc.identifier.citedreferenceIvanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi ( 2004 ), Preserving high‐resolution surface and rainfall data in operational‐scale basin hydrology: A fully‐distributed physically‐based approach, J. Hydrol., 298, 80 – 111, doi: 10.1016/j.jhydrol.2004.03.041.en_US
dc.identifier.citedreferenceIvanov, V. Y., R. L. Bras, and E. R. Vivoni ( 2008 ), Vegetation‐hydrology dynamics in complex terrain of semiarid areas. 1. A mechanistic approach to modeling dynamic feedbacks, Water Resour. Res., 44, W03429, doi: 10.1029/2006WR005588.en_US
dc.identifier.citedreferenceIvanov, V. Y., S. Fatichi, G. D. Jenerette, J. F. Espeleta, P. A. Troch, and T. E. Huxman ( 2010 ), Hysteresis of soil moisture spatial heterogeneity and the homogenizing effect of vegetation, Water Resour. Res., 46, W09521, doi: 10.1029/2009WR008611.en_US
dc.identifier.citedreferenceJacobs, J. M., B. P. Mohanty, H. En‐Ching, and D. Miller ( 2008 ), SMEX02: Field scale variability, time stability and similarity of soil moisture, Remote Sens. Environ., 92, 436 – 446, doi: 10.1016/j.rse.2004.02.017.en_US
dc.identifier.citedreferenceJuang, J.‐Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H.‐S. Kim, and R. Oren ( 2007 ), Eco‐hydrological controls on summertime convective rainfall triggers, Global Change Biol., 13, 887 – 896, doi: 10.1111/j.1365-2486.2006.01315.x.en_US
dc.identifier.citedreferenceKatul, G. G., P. Todd, D. Pataki, Z. J. Kabala, and R. Oren ( 1997 ), Soil water depletion by oak trees and the influence of root water uptake on moisture content spatial statistics, Water Resour. Res., 33 ( 4 ), 611 – 623, doi: 10.1029/96WR03978.en_US
dc.identifier.citedreferenceKatul, G. G., A. Porporato, E. Daly, A. C. Oishi, H.‐S. Kim, P. C. Stoy, J.‐Y. Juang, and M. B. Siqueira ( 2007 ), On the spectrum of soil moisture from hourly to interannual scales, Water Resour. Res., 43, W05428, doi: 10.1029/2006WR005356.en_US
dc.identifier.citedreferenceKeefer, T. O., M. S. Moran, and G. B. Paige ( 2008 ), Long‐term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S07, doi: 10.1029/2006WR005702.en_US
dc.identifier.citedreferenceKim, J., and V. Y. Ivanov ( 2014 ), On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and surface shield, Water Resour. Res., 50, 1025 – 1045, doi: 10.1002/2013WR014580.en_US
dc.identifier.citedreferenceLawrence, J. E., and G. M. Hornberger ( 2007 ), Soil moisture variability across climate zones, Geophys. Res. Lett., 34, L20402, doi: 10.1029/2007GL031382.en_US
dc.identifier.citedreferenceLegates, D. R., R. Mahmood, D. F. Levia, T. L. DeLiberty, S. M. Quiring, C. Houser, and F. E. Nelson ( 2011 ), Soil moisture: A central and unifying theme in physical geography, Prog. Phys. Geogr., 35 ( 1 ), 65 – 86.en_US
dc.identifier.citedreferenceLeuzinger, S., G. Zotz, R. Asshoff, and C. Körner ( 2005 ), Responses of deciduous forest trees to severe drought in Central Europe, Tree Physiol., 25, 641 – 650.en_US
dc.identifier.citedreferenceMa, S., D. D. Baldocchi, L. Xu, and T. Hehn ( 2007 ), Inter‐annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California, Agric. For. Meteorol., 147, 157 – 171, doi: 10.1016/j.agrformet.2007.07.008.en_US
dc.identifier.citedreferenceMallants, D., B. P. Mohanty, A. Vervoort, and J. Feyen ( 1997 ), Spatial analysis of saturated hydraulic conductivity in a soil with macropores, Soil Technol., 10, 115 – 131.en_US
dc.identifier.citedreferenceMartínez García, G., Y. A. Pachepsky, and H. Vereecken ( 2014 ), Effect of soil hydraulic properties on the relationship between the spatial mean and variability of soil moisture, J. Hydrol., 516, 154 – 160.en_US
dc.identifier.citedreferenceMartinez, G., Y. A. Pachepsky, H. Vereecken, H. Hardelauf, M. Herbst, and K. Vanderlinden ( 2013 ), Modeling local control effects on the temporal stability of soil water content, J. Hydrol., 481, 106 – 118.en_US
dc.identifier.citedreferenceMellor, G. L., and T. Yamada ( 1982 ), Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20 ( 4 ), 871 – 875, doi: 10.1029/RG020i004p00851.en_US
dc.identifier.citedreferenceMittelbach, H., and S. I. Seneviratne ( 2012 ), A new perspective on the spatio‐temporal variability of soil moisture: Temporal dynamics versus time invariant contributions, Hydrol. Earth Syst. Sci., 16, 2169 – 2179.en_US
dc.identifier.citedreferenceMontaldo, N., and J. D. Albertson ( 2003 ), Temporal dynamics of soil moisture variability. 2. implications for land surface models, Water Resour. Res., 39 ( 10 ), 1275, doi: 10.1029/2002WR001618.en_US
dc.identifier.citedreferencePappas, C., S. Fatichi, S. Leuzinger, A. Wolf, and P. Burlando ( 2013 ), Sensitivity analysis of a process‐based ecosystem model: pinpointing parameterization and structural issues, J. Geophys. Res. – Biogeosciences, 118 ( 2 ), 505 – 528, doi: 10.1002/jgrg.20035.en_US
dc.identifier.citedreferencePappas, C., S. Fatichi, S. Rimkus, P. Burlando, and M. O. Huber, ( 2015 ), The role of local scale heterogeneities in terrestrial ecosystem modeling, J. Geophys. Res. – Biogeosciences, 120 ( 2 ), 341 – 360, doi: 10.1002/2014JG002735.en_US
dc.identifier.citedreferencePenna, D., M. Borga, D. Norbiato, and G. Dalla Fontana ( 2009 ), Hillslope scale soil moisture variability in a steep alpine terrain, J. Hydrol., 364 ( 3–4 ), 311 – 327, doi: 10.1016/j.jhydrol.2008.11.009.en_US
dc.identifier.citedreferencePorporato, A., F. Laio, L. Ridolfi, and I. Rodriguez‐Iturbe ( 2001 ), Plants in water‐controlled ecosystems: Active role in hydrologic processes and response to water stress. III. Vegetation water stress, Adv. Water Resour., 24, 725 – 744.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.