Show simple item record

Impacts of extreme 2013–2014 winter conditions on Lake Michigan's fall heat content, surface temperature, and evaporation

dc.contributor.authorGronewold, A. D.en_US
dc.contributor.authorAnderson, E. J.en_US
dc.contributor.authorLofgren, B.en_US
dc.contributor.authorBlanken, P. D.en_US
dc.contributor.authorWang, J.en_US
dc.contributor.authorSmith, J.en_US
dc.contributor.authorHunter, T.en_US
dc.contributor.authorLang, G.en_US
dc.contributor.authorStow, C. A.en_US
dc.contributor.authorBeletsky, D.en_US
dc.contributor.authorBratton, J.en_US
dc.date.accessioned2015-07-01T20:56:52Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05-16en_US
dc.identifier.citationGronewold, A. D.; Anderson, E. J.; Lofgren, B.; Blanken, P. D.; Wang, J.; Smith, J.; Hunter, T.; Lang, G.; Stow, C. A.; Beletsky, D.; Bratton, J. (2015). "Impacts of extreme 2013–2014 winter conditions on Lake Michigan's fall heat content, surface temperature, and evaporation." Geophysical Research Letters 42(9): 3364-3370.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112001
dc.description.abstractSince the late 1990s, the Laurentian Great Lakes have experienced persistent low water levels and above average over‐lake evaporation rates. During the winter of 2013–2014, the lakes endured the most persistent, lowest temperatures and highest ice cover in recent history, fostering speculation that over‐lake evaporation rates might decrease and that water levels might rise. To address this speculation, we examined interseasonal relationships in Lake Michigan's thermal regime. We find pronounced relationships between winter conditions and subsequent fall heat content, modest relationships with fall surface temperature, but essentially no correlation with fall evaporation rates. Our findings suggest that the extreme winter conditions of 2013–2014 may have induced a shift in Lake Michigan's thermal regime and that this shift coincides with a recent (and ongoing) rise in Great Lakes water levels. If the shift persists, it could (assuming precipitation rates remain relatively constant) represent a return to thermal and hydrologic conditions not observed on Lake Michigan in over 15 years.Key PointsLake Michigan has been in an altered thermal regime since the late 1990sThe 2013–2014 winter may return Lake Michigan to pre‐1998 thermal conditionsHydrological impacts of the 2013–2014 cold winter remain unclearen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherevaporationen_US
dc.subject.otherGreat Lakesen_US
dc.subject.otherEl Niñoen_US
dc.subject.otherhydrologic regimesen_US
dc.subject.otherthermal regimesen_US
dc.subject.otherice coveren_US
dc.titleImpacts of extreme 2013–2014 winter conditions on Lake Michigan's fall heat content, surface temperature, and evaporationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112001/1/grl52850.pdf
dc.identifier.doi10.1002/2015GL063799en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceLaird, N. F., and D. A. Kristovich ( 2002 ), Variations of sensible and latent heat fluxes from a Great Lakes buoy and associated synoptic weather patterns, J. Hydrometeorol., 3 ( 1 ), 3 – 12.en_US
dc.identifier.citedreferenceClites, A. H., J. Wang, K. B. Campbell, A. D. Gronewold, R. A. Assel, X. Bai, and G. A. Leshkevich ( 2014 ), Cold water and high ice cover on Great Lakes in spring 2014, Eos Trans. AGU, 95 ( 34 ), 305 – 306.en_US
dc.identifier.citedreferenceCroley, T. E., II ( 1989 ), Verifiable evaporation modeling on the Laurentian Great Lakes, Water Resour. Res., 25 ( 5 ), 781 – 792.en_US
dc.identifier.citedreferenceCroley, T. E., II ( 1992 ), Long‐term heat storage in the Great Lakes, Water Resour. Res., 28 ( 1 ), 69 – 81.en_US
dc.identifier.citedreferenceCroley, T. E., II, and R. A. Assel ( 1994 ), A one‐dimensional ice thermodynamics model for the Laurentian Great Lakes, Water Resour. Res., 30 ( 3 ), 625 – 639.en_US
dc.identifier.citedreferenceCroley, T. E., II, and H. C. Hartmann ( 1987 ), Near real‐time forecasting of large lake supplies, J. Water Resour. Plann. Manage., 113 ( 6 ), 810 – 823.en_US
dc.identifier.citedreferenceCroley, T. E., II, and D. H. Lee ( 1993 ), Evaluation of Great Lakes net basin supply forecasts, J. Am. Water Resour. Assoc., 29 ( 2 ), 267 – 282.en_US
dc.identifier.citedreferenceEdson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare, and C. W. Fairall ( 1998 ), Direct covariance flux estimates from mobile platforms at sea, J. Atmos. Oceanic Technol., 15 ( 2 ), 547 – 562.en_US
dc.identifier.citedreferenceFoster, M. J., and A. Heidinger ( 2014 ), Entering the era of 30+ year satellite cloud climatologies: A North American case study, J. Clim., 27, 6687 – 6697, doi: 10.1175/JCLI-D-14-00068.1.en_US
dc.identifier.citedreferenceFree, M., and B. Sun ( 2013 ), Time‐varying biases in U.S. total cloud cover data, J. Atmos. Oceanic Technol., 30 ( 12 ), 2838 – 2849.en_US
dc.identifier.citedreferenceGregg, M. C., and M. L. Newlin ( 2014 ), [Global oceans] Ocean heat content [in “State of the Climate in 2013”], Bull. Am. Meteorol. Soc., 95 ( 7 ), S54 – S57.en_US
dc.identifier.citedreferenceGronewold, A. D., and C. A. Stow ( 2014 ), Water loss from the Great Lakes, Science, 343 ( 6175 ), 1084 – 1085.en_US
dc.identifier.citedreferenceGronewold, A. D., A. H. Clites, T. S. Hunter, and C. A. Stow ( 2011 ), An appraisal of the Great Lakes advanced hydrologic prediction system, J. Great Lakes Res., 37 ( 3 ), 577 – 583.en_US
dc.identifier.citedreferenceGronewold, A. D., V. Fortin, B. M. Lofgren, A. H. Clites, C. A. Stow, and F. H. Quinn ( 2013 ), Coasts, water levels, and climate change: A Great Lakes perspective, Clim. Change, 120 ( 4 ), 697 – 711.en_US
dc.identifier.citedreferenceGronewold, A. D., A. H. Clites, J. Bruxer, K. Kompoltowicz, J. P. Smith, T. S. Hunter, and C. Wong ( 2015 ), Great Lakes water levels surge, return to normal, Eos, Trans. AGU, 96 ( 6 ), 14 – 17, doi: 10.1029/2015EO026023.en_US
dc.identifier.citedreferenceGueymard, C. A., and S. M. Wilcox ( 2011 ), Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground‐based or satellite data, Sol. Energy, 85 ( 5 ), 1068 – 1084.en_US
dc.identifier.citedreferenceHamilton, G. D. ( 1986 ), National Data Buoy Center Programs, Bull. Am. Meteorol. Soc., 67 ( 4 ), 411 – 415.en_US
dc.identifier.citedreferenceIhaka, R., and R. Gentleman ( 1996 ), R: A language for data analysis and graphics, J. Comput. Graph. Stat., 5 ( 3 ), 299 – 314.en_US
dc.identifier.citedreferenceLeshkevich, G. A., D. J. Schwab, and G. C. Muhr ( 1996 ), Satellite environmental monitoring of the Great Lakes: Great Lakes CoastWatch program update, Mar. Technol. Soc. J., 30 ( 4 ), 28 – 35.en_US
dc.identifier.citedreferenceMaxwell, E. L. ( 1998 ), METSTAT—The solar radiation model used in the production of the National Solar Radiation Data Base (NSRDB), Sol. Energy, 62 ( 4 ), 263 – 279.en_US
dc.identifier.citedreferenceMcPhaden, M. J. ( 1999 ), Genesis and evolution of the 1997–98 El Niño, Science, 283 ( 5404 ), 950 – 954.en_US
dc.identifier.citedreferenceMeindl, E. A., and G. D. Hamilton ( 1992 ), Programs of the National Data Buoy Center, Bull. Am. Meteorol. Soc., 73 ( 7 ), 985 – 993.en_US
dc.identifier.citedreferenceNOAA National Climatic Data Center, ( 2014 ), State of the climate: Synoptic discussion for January 2014, Tech. Rep., Natl. Oceanic and Atmos. Admin., Asheville, N. C.en_US
dc.identifier.citedreferenceSchwab, D. J., and K. W. Bedford ( 1994 ), Initial implementation of the Great Lakes Forecasting System: A real‐time system for predicting lake circulation and thermal structure, Water Pollut. Res. J. Can., 29, 203 – 220.en_US
dc.identifier.citedreferenceSchwab, D. J., G. A. Leshkevich, and G. C. Muhr ( 1999 ), Automated mapping of surface water temperature in the Great Lakes, J. Great Lakes Res., 25 ( 3 ), 468 – 481.en_US
dc.identifier.citedreferenceSpence, C., P. D. Blanken, N. Hedstrom, V. Fortin, and H. Wilson ( 2011 ), Evaporation from Lake Superior: 2: Spatial distribution and variability, J. Great Lakes Res., 37 ( 4 ), 717 – 724.en_US
dc.identifier.citedreferenceSpence, C., P. D. Blanken, J. D. Lenters, and N. Hedstrom ( 2013 ), The importance of spring and autumn atmospheric conditions for the evaporation regime of Lake Superior, J. Hydrometeorol., 14 ( 5 ), 1647 – 1658.en_US
dc.identifier.citedreferenceVan Cleave, K., J. D. Lenters, J. Wang, and E. M. Verhamme ( 2014 ), A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998, Limnol. Oceanogr., 59 ( 6 ), 1889 – 1898.en_US
dc.identifier.citedreferenceWang, J., X. Bai, H. Hu, A. H. Clites, M. Colton, and B. M. Lofgren ( 2012 ), Temporal and spatial variability of Great Lakes ice cover, 1973–2010, J. Clim., 25 ( 4 ), 1318 – 1329.en_US
dc.identifier.citedreferenceWild, M., G. Hans, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kallis, V. Russak, and A. Tsvetkov ( 2005 ), From dimming to brightening: Decadal changes in solar radiation at the Earth's surface, Science, 308 ( 5723 ), 847 – 850.en_US
dc.identifier.citedreferenceAssel, R. A. ( 1998 ), The 1997 ENSO event and implications for North American Laurentian Great Lakes winter severity and ice cover, Geophys. Res. Lett., 25 ( 7 ), 1031 – 1033.en_US
dc.identifier.citedreferenceAssel, R. A., F. H. Quinn, and C. E. Sellinger ( 2004 ), Hydroclimatic factors of the recent record drop in Laurentian Great Lakes water levels, Bull. Am. Meteorol. Soc., 85 ( 8 ), 1143 – 1151.en_US
dc.identifier.citedreferenceAustin, J. A., and J. Allen ( 2011 ), Sensitivity of summer Lake Superior thermal structure to meteorological forcing, Limnol. Oceanogr., 56 ( 3 ), 1141 – 1154.en_US
dc.identifier.citedreferenceAustin, J. A., and S. M. Colman ( 2007 ), Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice‐albedo feedback, Geophys. Res. Lett., 34, L06604, doi: 10.1029/2006GL029021.en_US
dc.identifier.citedreferenceBai, X., et al. ( 2015 ), A record‐breaking low ice cover over the Great Lakes during winter 2011/2012: Combined effects of a strong positive NAO and La Niña, Clim. Dyn., 44 ( 5–6 ), 1187 – 1213.en_US
dc.identifier.citedreferenceBeletsky, D., and D. J. Schwab ( 2001 ), Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability, J. Geophys. Res., 106 ( C9 ), 19,745 – 19,771.en_US
dc.identifier.citedreferenceBeletsky, D., D. J. Schwab, and M. McCormick ( 2006 ), Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan, J. Geophys. Res., 111, C10010, doi: 10.1029/2005JC003222.en_US
dc.identifier.citedreferenceBlanken, P. D., W. R. Rouse, A. D. Culf, C. Spence, L. D. Boudreau, J. N. Jasper, B. Kochtubajda, W. M. Schertzer, P. Marsh, and D. Verseghy ( 2000 ), Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada, Water Resour. Res., 36 ( 4 ), 1069 – 1077.en_US
dc.identifier.citedreferenceBlanken, P. D., C. Spence, N. Hedstrom, and J. D. Lenters ( 2011 ), Evaporation from Lake Superior: 1. Physical controls and processes, J. Great Lakes Res., 37 ( 4 ), 707 – 716.en_US
dc.identifier.citedreferenceChandra, S., J. R. Ziemke, W. Min, and W. G. Read ( 1998 ), Effects of 1997‐1998 El Niño on tropospheric ozone and water vapor, Geophys. Res. Lett., 25 ( 20 ), 3867 – 3870.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.