Show simple item record

Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?

dc.contributor.authorDelzanno, G. L.en_US
dc.contributor.authorBorovsky, J. E.en_US
dc.contributor.authorThomsen, M. F.en_US
dc.contributor.authorMoulton, J. D.en_US
dc.contributor.authorMacDonald, E. A.en_US
dc.date.accessioned2015-07-01T20:56:53Z
dc.date.available2016-07-05T17:27:58Zen
dc.date.issued2015-05en_US
dc.identifier.citationDelzanno, G. L.; Borovsky, J. E.; Thomsen, M. F.; Moulton, J. D.; MacDonald, E. A. (2015). "Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?." Journal of Geophysical Research: Space Physics 120(5): 3647-3664.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112002
dc.description.abstractThe idea of using a high‐voltage electron beam with substantial current to actively probe magnetic field line connectivity in space has been discussed since the 1970s. However, its experimental realization onboard a magnetospheric spacecraft has never been accomplished because the tenuous magnetospheric plasma cannot provide the return current necessary to keep spacecraft charging under control. In this work, we perform Particle‐In‐Cell simulations to investigate the conditions under which a high‐voltage electron beam can be emitted from a spacecraft and explore solutions that can mitigate spacecraft charging. The electron beam cannot simply be compensated for by an ion beam of equal current, because the Child‐Langmuir space charge limit is violated under conditions of interest. On the other hand, releasing a high‐density neutral contactor plasma prior and during beam emission is critical in aiding beam emission. We show that after an initial transient controlled by the size of the contactor cloud where the spacecraft potential rises, the spacecraft potential can settle into conditions that allow for electron beam emission. A physical explanation of this result in terms of ion emission into spherical geometry from the surface of the plasma cloud is presented, together with scaling laws of the peak spacecraft potential varying the ion mass and beam current. These results suggest that a strategy where the contactor plasma and the electron beam operate simultaneously might offer a pathway to perform beam experiments in the magnetosphere.Key PointsThe contactor plasma mitigates spacecraft charging from electron beam emissionThe contactor allows ion emission over a larger, quasi‐spherical areaThe peak of the spacecraft potential is lower for larger contactor cloudsen_US
dc.publisherMcGraw‐Hillen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHigh voltage electron beamen_US
dc.subject.otherContactor plasmaen_US
dc.subject.otherSpace beam experimentsen_US
dc.subject.otherPIC simulationsen_US
dc.subject.otherSpacecraft chargingen_US
dc.titleFuture beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112002/1/jgra51731.pdf
dc.identifier.doi10.1002/2014JA020608en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePrech, L., Z. Nemecek, J. Safrankova, J. Simunek, V. Truhlik, and N. M. Shutte ( 1995 ), Response of the electron energy distribution to an artificially emitted electron bea: APEX experiment, Adv. Space Res., 15 ( 12 ), 33 – 36.en_US
dc.identifier.citedreferenceMatéo‐Vélez, J.‐C., et al. ( 2012 ), SPIS Science: modelling spacecraft cleanliness for low‐energy plasma measurement, Proceedings of the 12th Spacecraft Charging and Technology Conference, Kitakyushu, Japan.en_US
dc.identifier.citedreferenceMuranaka, T., et al. ( 2008 ), Development of multi‐utility spacecraft charging analysis tool (MUSCAT), IEEE Trans. Plasma Sci., 36 ( 5 ), 2336 – 2349.en_US
dc.identifier.citedreferenceMyers, N. B., W. J. Raitt, A. B. White, P. M. Banks, B. E. Gilchrist, and S. Sasaki ( 1990 ), Vehicle charging effects during electron beam emission from the CHARGE‐2 experiment, J. Spacecraft Rockets, 27, 25 – 37.en_US
dc.identifier.citedreferenceNational Research Council ( 2012 ), Solar and Space Physics: A Science for a Technological Society, National Academies Press, Washington, D. C.en_US
dc.identifier.citedreferenceNemzek, R. J., and J. R. Winckler ( 1991 ), Electron beam sounding rocket experiments for probing the distant magnetosphere, Phys. Rev. Lett., 67, 987 – 990.en_US
dc.identifier.citedreferenceNemzek, R. J., P. R. Malcolm, and J. R. Winckler ( 1992 ), Comparison of Echo 7 field line length measurements to magnetospheric model predictions, J. Geophys. Res., 97, 1279 – 1287.en_US
dc.identifier.citedreferenceNeubert, T., and B. E. Gilchrist ( 2004 ), Relativistic electron beam injection from spacecraft: Performance and applications, Adv. Space Res., 34, 2409 – 2412.en_US
dc.identifier.citedreferenceOlsen, R. C. ( 1985 ), Experiments in charge control at geosynchronous orbit – ATS‐5 and ATS‐6, J. Spacecraft Rockets, 22, 254 – 264.en_US
dc.identifier.citedreferencePellat, R., and R. Z. Sagdeev ( 1980 ), Concluding remarks on the ARAKS experiments, Ann. Geophys., 36, 443 – 446.en_US
dc.identifier.citedreferencePrech, L., Z. Nemecek, J. Safrankova, and A. Omar ( 2002 ), Actively produced high‐energy electron bursts within the magnetosphere: The APEX project, Ann. Geophys., 20, 1529 – 1538.en_US
dc.identifier.citedreferenceRaitt, W. J., A. B. White, A. C. Fraser‐Smith, B. E. Gilchrist, and T. J. Hallinan ( 1995 ), VLF wave experiments in space using a modulated electron beam, J. Spacecraft Rockets, 32, 670 – 679.en_US
dc.identifier.citedreferenceRoussel, J.‐F., F. Rogier, G. Dufour, J.‐C. Mateo‐Velez, J. Forest, A. Hilgers, D. Rodgers, L. Girard, and D. Payan ( 2008 ), Spis open‐source code: methods, capabilities, achievements, and prospects, IEEE Trans. on Plasma Sci., 36 ( 5 ), 2360 – 2368.en_US
dc.identifier.citedreferenceRubin, A. G., H. A. Cohen, D. A. Hardy, M. F. Tautz, and N. A. Saflekos ( 1980 ), Computer simulation of spacecraft charging on SCATHA, Proceedings of the Third Spacecraft Charging and Technology Conference, 632 – 641, US Air Force Academy, Colorado Springs, Colo.en_US
dc.identifier.citedreferenceSchmidt, R., et al. ( 1995 ), Results from active spacecraft potential control on the Geotail spacecraft, J. Geophys. Res., 100, 17,253 – 17,259.en_US
dc.identifier.citedreferenceSwanson, R. L., J. E. Steffen, and J. R. Winckler ( 1986 ), The effect of strong pitch angle scattering on the use of artificial auroral streaks for echo detection – ECHO 5, Planet. Space Sci., 34, 411 – 427.en_US
dc.identifier.citedreferenceTorkar, K., et al. ( 2001 ), Active spacecraft potential for Cluster – implementation and first results, Ann. Geophys., 19, 1289 – 1302.en_US
dc.identifier.citedreferenceUman, M. A. ( 1987 ), The Lightning Discharge, Academic Press, Orlando, Fla.en_US
dc.identifier.citedreferenceWang, J., and S. T. Lai ( 1997 ), Virtual anode in ion beam emissions in space: Numerical simulations, J. Spacecraft Rockets, 6, 829 – 836.en_US
dc.identifier.citedreferenceWhipple, E. C. ( 1981 ), Potentials of surfaces in space, Rep. Prog. Phys., 44, 1197.en_US
dc.identifier.citedreferenceWilhelm, K., W. Bernstrein, and B. A. Whalen ( 1980 ), Study of electric fields parallel to the magnetic lines of force using artificially injected energetic electrons, Geophys. Res. Lett., 7, 117 – 120.en_US
dc.identifier.citedreferenceWinckler, J. R. ( 1980 ), The application of artificial electron beams to magnetospheric research, Rev. Geophys., 18 ( 3 ), 659 – 682.en_US
dc.identifier.citedreferenceWinckler, J. R. ( 1992 ), Controlled experiments in the Earth's magnetosphere with artificial electron beams, Rev. Mod. Phys., 64, 859 – 871.en_US
dc.identifier.citedreferenceZhulin, I. A., A. V. Kustov, M. V. Uspensky, and T. V. Miroshnikova ( 1980 ), Radar observations of the overdense ionospheric ionization created by the artificial electron beam in the “Zarnitza‐2” experiment, Ann. Geophys., 36, 313 – 318.en_US
dc.identifier.citedreferenceBirdsall, C., and A. Langdon ( 1985 ), Plasma Physics via Computer Simulation, McGraw‐Hill, New York.en_US
dc.identifier.citedreferenceBorovsky, J. E., D. J. McComas, M. F. Thomsen, J. L. Burch, J. Cravens, C. J. Pollock, T. E. Moore, and S. B. Mende ( 2000 ), Magnetosphere‐Ionosphere Observatory (MIO): A multisatellite mission designed to solve the problem of what generates auroral arcs, Eos Trans. AGU, 79 ( 45 ), F744.en_US
dc.identifier.citedreferenceChild, C. D. ( 1911 ), Discharge from hot CaO, Phys. Rev., 32, 492 – 511.en_US
dc.identifier.citedreferenceCohen, H. A., A. L. Chesley, T. Aggson, M. S. Gussenhoven, R. C. Olsen, and E. C. Whipple ( 1980a ), A comparison of three techniques of discharging satellites, Proceedings of the Third Spacecraft Charging and Technology Conference, 888 – 893, US Air Force Academy, Colorado Springs, Colo.en_US
dc.identifier.citedreferenceCohen, H. A., et al. ( 1980b ), P78‐2 satellite and payload responses to electron beam operations on March 30, 1979, Proceedings of the Third Spacecraft Charging and Technology Conference, 509 – 559, US Air Force Academy, Colorado Springs, Colo.en_US
dc.identifier.citedreferenceComfort, R. H., T. E. Moore, P. D. Craven, C. J. Pollock, F. S. Mozer, and W. S. Williamson ( 1998 ), Spacecraft potential control by the Plasma Source Instrument on the POLAR satellite, J. Spacecraft Rockets, 35, 845 – 849.en_US
dc.identifier.citedreferenceDeForest, S. E. ( 1972 ), Spacecraft charging at synchronous orbit, J. Geophys. Res., 77, 651 – 659.en_US
dc.identifier.citedreferenceDelzanno, G. L., and X. Z. Tang ( 2014 ), Charging and heat collection by a positively charged dust grain in a plasma, Phys. Rev. Lett., 113 ( 3 ), 035002.en_US
dc.identifier.citedreferenceDelzanno, G. L., E. Camporeale, J. D. Moulton, J. E. Borovsky, E. A. MacDonald, and M. F. Thomsen ( 2013 ), CPIC: A curvilinear particle‐in‐cell code for plasma‐material interaction studies, IEEE Trans. Plasma Sci., 41 ( 12 ), 3577 – 3587.en_US
dc.identifier.citedreferenceDelzanno, G. L., J. E. Borovsky, M. F. Thomsen, and J. D. Moulton ( 2015 ), Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes, J. Geophys. Res. Space Physics, doi: 10.1002/2014JA020683.en_US
dc.identifier.citedreferenceGussenhoven, M. S., H. A. Cohen, D. A. Hardy, W. J. Burke, and A. L. Chesley ( 1980 ), Analysis of ambient and beam particle characteristics during the ejection of an electron beam from a satellite in near‐geosynchronous orbit on March 30, 1979, Proceedings of the Third Spacecraft Charging and Technology Conference, 642 – 664, US Air Force Academy, Colorado Springs, Colo.en_US
dc.identifier.citedreferenceHallinan, T. J., H. C. Stenbaek‐Nielsen, and J. R. Winckler ( 1978 ), The Echo 4 electron beam experiment: Television observation of artificial auroral streaks indicating strong beam interaction in the high‐latitude magnetosphere, J. Geophys. Res., 83, 3263 – 3272.en_US
dc.identifier.citedreferenceHastings, D., and H. Garrett ( 1996 ), Spacecraft‐Environment Interactions, Cambridge Univ. Press, Cambridge.en_US
dc.identifier.citedreferenceHendrickson, R. A., R. W. McEntire, and J. R. Winckler ( 1975 ), Echo 1: An experimental analysis of local effects and conjugate return echoes from an electron beam injected into the magnetosphere by a souning rocket, Planet. Space Sci., 23, 1431.en_US
dc.identifier.citedreferenceHuang, C. Y., W. J. Burke, D. A. Hardy, M. P. Grough, D. G. Olsen, L. C. Gentile, B. E. Gilchrist, C. Bonifazi, W. J. Raitt, and D. C. Thompson ( 1998 ), Cerenkov emissions of ion acoustic‐like waves generated by electron beams emitted during TSS 1R, Geophys. Res. Lett., 25, 721 – 724.en_US
dc.identifier.citedreferenceKatz, I., J. N. Barfield, J. L. Burch, J. A. Marshall, W. C. Gibson, T. Neubert, W. T. Roberts, W. W. L. Taylor, and J. R. Beattie ( 1994 ), Interactions between the space experiments with particle accelerators, plasma contactor, and the ionosphere, J. Spacecraft Rockets, 31, 1079 – 1084.en_US
dc.identifier.citedreferenceKrehbiel, P. R., M. Brook, and R. A. McCrory ( 1979 ), An analysis of the charge structure of lightning discharges to ground, J. Geophys. Res., 84, 2432 – 2456.en_US
dc.identifier.citedreferenceLangmuir, I., and K. B. Blodgett ( 1924 ), Current limited by space charge between concentric spheres, Phys. Rev., 23, 49 – 59.en_US
dc.identifier.citedreferenceLau, Y. Y. ( 2001 ), Simple theory for the two‐dimensional child‐langmuir law, Phys. Rev. Lett., 87, 278301.en_US
dc.identifier.citedreferenceLavergnat, J. ( 1982 ), The French‐Soviet experiment ARAKS: Main results, in Artificial Particle Beams in Space Plasma Studies, edited by B.   Grandal, pp. 87, Plenum, New York.en_US
dc.identifier.citedreferenceLieberman, M. A., and A. J. Lichtenberg ( 2005 ), Principles of Plasma Discharges and Materials Processing, Wiley Interscience, Hoboken, N. J.en_US
dc.identifier.citedreferenceMacDonald, E. A., J. E. Borovsky, B. Larsen, and E. Dors ( 2012 ), A science mission concept to actively probe magnetosphere‐ionosphere coupling. Decadal Survey in Solar and Space Physics papers.en_US
dc.identifier.citedreferenceMandell, M. J., V. A. Davis, D. L. Cooke, A. T. Wheelock, and C. J. Roth ( 2006 ), Nascap‐2k spacecraft charging code overview, IEEE Trans. Plasma Sci., 34 ( 5 ), 2084 – 2093.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.