Show simple item record

Petunia × hybrida floral scent production is negatively affected by high‐temperature growth conditions

dc.contributor.authorCna'Ani, Alonen_US
dc.contributor.authorMühlemann, Joelle K.en_US
dc.contributor.authorRavid, Jasminen_US
dc.contributor.authorMasci, Taniaen_US
dc.contributor.authorKlempien, Antjeen_US
dc.contributor.authorNguyen, Thuong T. H.en_US
dc.contributor.authorDudareva, Nataliaen_US
dc.contributor.authorPichersky, Eranen_US
dc.contributor.authorVainstein, Alexanderen_US
dc.date.accessioned2015-07-01T20:56:54Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationCna'Ani, Alon ; Mühlemann, Joelle K. ; Ravid, Jasmin ; Masci, Tania ; Klempien, Antje ; Nguyen, Thuong T. H. ; Dudareva, Natalia ; Pichersky, Eran ; Vainstein, Alexander (2015). "Petuniaâ Ã â hybrida floral scent production is negatively affected by highâ temperature growth conditions." Plant, Cell & Environment (7): 1333-1346.en_US
dc.identifier.issn0140-7791en_US
dc.identifier.issn1365-3040en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112003
dc.description.abstractIncreasing temperatures due to changing global climate are interfering with plant–pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography–mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid‐based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down‐regulation of scent‐related structural gene expression from both phenylpropanoid and shikimate pathways, and up‐regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic ‘Blue Spark’ plants overexpressing CaMV 35S‐driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long‐term high‐temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up‐regulation of transcription might negate the adverse effects of temperature on scent production.We demonstrate that petunia flowers produce less volatile phenylpropanoid compounds, in both scent bouquets and internal pools, in response to elevated temperatures. We reveal that the decrease in floral scent is correlated with reduced transcript levels of scent‐related genes, and that the adverse effect of high temperature can be negated by expressing transcriptional up‐regulators. We believe that the conclusions and implications drawn from the original data presented in our manuscript will be of particular interest to a broad spectrum of your readers, particularly in view of recent changes in global climate and the risk of environmental disruption of plant–pollinator mutualism.en_US
dc.publisherFAOen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othertemperatureen_US
dc.subject.othervolatileen_US
dc.subject.otherenvironmental stimulusen_US
dc.subject.otheranthocyaninen_US
dc.subject.otherpetuniaen_US
dc.subject.otherphenylpropanoiden_US
dc.subject.otherproduction of anthocyanin pigment1 (PAP1)en_US
dc.titlePetunia × hybrida floral scent production is negatively affected by high‐temperature growth conditionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiologyen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112003/1/pce12486-sup-0001-si.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112003/2/pce12486.pdf
dc.identifier.doi10.1111/pce.12486en_US
dc.identifier.sourcePlant, Cell & Environmenten_US
dc.identifier.citedreferencePichersky E., Noel J.P. & Dudareva N. ( 2006 ) Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311, 808 – 811.en_US
dc.identifier.citedreferenceOlsen K.M., Lea U.S., Slimestad R., Verheul M. & Lillo C. ( 2008 ) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental‐triggered flavonoid synthesis. Journal of Plant Physiology 165, 1491 – 1499.en_US
dc.identifier.citedreferenceOrlova I., Marshall‐Colón A., Schnepp J., Wood B., Varbanova M., Fridman E., … Dudareva N. ( 2006 ) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. The Plant Cell 18, 3458 – 3475.en_US
dc.identifier.citedreferenceOyama‐Okubo N., Ando T., Watanabe N., Marchesi E., Uchida K. & Nakayama M. ( 2005 ) Emission mechanism of floral scent in Petunia axillaris. Bioscience, Biotechnology, and Biochemistry 69, 773 – 777.en_US
dc.identifier.citedreferencePenfield S. ( 2008 ) Temperature perception and signal transduction in plants. New Phytologist 179, 615 – 628.en_US
dc.identifier.citedreferencePenuelas J. & Staudt M. ( 2009 ) BVOCs and global change. Trends in Plant Science 15, 133 – 144.en_US
dc.identifier.citedreferenceProveniers M.C.G. & van Zanten M. ( 2012 ) High temperature acclimation through PIF4 signaling. Trends in Plant Science 18, 59 – 64.en_US
dc.identifier.citedreferenceQiu J., Gao F., Shen G., Li C., Han X., Zhao Q., … Pang Y. ( 2013 ) Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PLoS ONE 8, e70665.en_US
dc.identifier.citedreferenceReimers M. & Carey V.J. ( 2006 ) Bioconductor: an open source framework for bioinformatics and computational biology. In Methods in Enzymology (eds K. Alan & O. Brian ), pp. 119 – 134. Academic Press, Waltham, Massachusetts, USA.en_US
dc.identifier.citedreferenceRobinson M.D., McCarthy D.J. & Smyth G.K. ( 2010 ) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 26, 139 – 140.en_US
dc.identifier.citedreferenceRowan D.D., Cao M., Lin‐Wang K., Cooney J.M., Jensen D.J., Austin P.T., … Allan A.C. ( 2009 ) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytologist 182, 102 – 115.en_US
dc.identifier.citedreferenceSagae M., Oyama‐Okubo N., Ando T., Marchesi E. & Nakayama M. ( 2008 ) Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Bioscience, Biotechnology, and Biochemistry 72, 110 – 115.en_US
dc.identifier.citedreferenceSalome P.A. & McClung C.R. ( 2005 ) PSEUDO‐RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. The Plant Cell 17, 791 – 803.en_US
dc.identifier.citedreferenceShaked‐Sachray L., Weiss D., Reuveni M., Nissim‐Levi A. & Oren‐Shamir M. ( 2002 ) Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiologia Plantarum 114, 559 – 565.en_US
dc.identifier.citedreferenceShvarts M., Borochov A. & Weiss D. ( 1997 ) Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiologia Plantarum 99, 67 – 72.en_US
dc.identifier.citedreferenceSong J. & Wang Z. ( 2011 ) RNAi‐mediated suppression of the phenylalanine ammonia‐lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. Journal of Plant Research 124, 183 – 192.en_US
dc.identifier.citedreferenceSpitzer‐Rimon B., Marhevka E., Barkai O., Marton I., Edelbaum O., Masci T., … Vainstein A. ( 2010 ) EOBII, a gene encoding a flower‐specific regulator of phenylpropanoid volatiles' biosynthesis in petunia. The Plant Cell 22, 1961 – 1976.en_US
dc.identifier.citedreferenceSpitzer‐Rimon B., Farhi M., Albo B., Cna'ani A., Ben Zvi M.M., Masci T., … Vainstein A. ( 2012 ) The R2R3‐MYB‐like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent‐related genes in petunia. The Plant Cell 24, 5089 – 5105.en_US
dc.identifier.citedreferenceStocker T., Qin D. & Platner G. ( 2013 ) Climate Change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers (IPCC, 2013).en_US
dc.identifier.citedreferenceStone G.N. & Stone G. ( 1993 ) Endothermy in the solitary bee Anthophora plumipes: independent measures of thermoregulatory ability, costs of warm‐up and the role of body size. Journal of Experimental Biology 174, 299 – 320.en_US
dc.identifier.citedreferenceTardieu F. & Granier C. ( 2000 ) Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions. Plant Molecular Biology 43, 555 – 567.en_US
dc.identifier.citedreferenceTholl D., Boland W., Hansel A., Loreto F., Röse U.S.R. & Schnitzler J.P. ( 2006 ) Practical approaches to plant volatile analysis. The Plant Journal 45, 540 – 560.en_US
dc.identifier.citedreferenceVan Moerkercke A., Haring M.A. & Schuurink R.C. ( 2011 ) The transcription factor EMISSION OF BENZENOIDS II activates the MYB ODORANT1 promoter at a MYB binding site specific for fragrant petunias. The Plant Journal 67, 917 – 928.en_US
dc.identifier.citedreferenceVerdonk J.C., Haring M.A., van Tunen A.J. & Schuurink R.C. ( 2005 ) ODORANT1 regulates fragrance biosynthesis in petunia flowers. The Plant Cell 17, 1612 – 1624.en_US
dc.identifier.citedreferenceVogt T. ( 2009 ) Phenylpropanoid biosynthesis. Molecular Plant 3, 2 – 20.en_US
dc.identifier.citedreferenceZhou L.L., Zeng H.N., Shi M.Z. & Xie D.Y. ( 2008 ) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229, 37 – 51.en_US
dc.identifier.citedreferenceZvi M.M.B., Negre‐Zakharov F., Masci T., Ovadis M., Shklarman E., Ben‐Meir H., … Vainstein A. ( 2008 ) Interlinking showy traits: co‐engineering of scent and colour biosynthesis in flowers. Plant Biotechnology Journal 6, 403 – 415.en_US
dc.identifier.citedreferenceZvi M.M.B., Shklarman E., Masci T., Kalev H., Debener T., Shafir S., … Vainstein A. ( 2012 ) PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytologist 195, 335 – 345.en_US
dc.identifier.citedreferenceGordo O. & Sanz J.J. ( 2005 ) Phenology and climate change: a long‐term study in a Mediterranean locality. Oecologia 146, 484 – 495.en_US
dc.identifier.citedreferenceGrabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., … Regev A. ( 2011 ) Full‐length transcriptome assembly from RNA‐Seq data without a reference genome. Nature Biotechnology 29, 644 – 652.en_US
dc.identifier.citedreferenceGuenther A., Hewitt C.N., Erickson D., Fall R., Geron C., Graedel T., … Zimmerman P. ( 1995 ) A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres 100, 8873 – 8892.en_US
dc.identifier.citedreferenceHaas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., … Regev A. ( 2013 ) De novo transcript sequence reconstruction from RNA‐seq using the Trinity platform for reference generation and analysis. Nature Protocols 8, 1494 – 1512.en_US
dc.identifier.citedreferenceAlam P. & Abdin M.Z. ( 2011 ) Over‐expression of HMG‐CoA reductase and amorpha‐4,11‐diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Reports 30, 1919 – 1928.en_US
dc.identifier.citedreferenceAnterola A.M., Jeon J.‐H., Davin L.B. & Lewis N.G. ( 2002 ) Transcriptional control of monolignol biosynthesis in Pinus taeda. Journal of Biological Chemistry 277, 18272 – 18280.en_US
dc.identifier.citedreferenceBishop J.A. & Armbruster W.S. ( 1999 ) Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny and ecology. Functional Ecology 13, 711 – 724.en_US
dc.identifier.citedreferenceBlount J.W., Korth K.L., Masoud S.A., Rasmussen S., Lamb C. & Dixon R.A. ( 2000 ) Altering expression of cinnamic acid 4‐hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiology 122, 107 – 116.en_US
dc.identifier.citedreferenceBoatright J., Negre F., Chen X., Kish C.M., Wood B., Peel G., … Dudareva N. ( 2004 ) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiology 135, 1993 – 2011.en_US
dc.identifier.citedreferenceBorevitz J.O., Xia Y., Blount J., Dixon R.A. & Lamb C. ( 2000 ) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell 12, 2383 – 2394.en_US
dc.identifier.citedreferenceChristie P.J., Alfenito M.R. & Walbot V. ( 1994 ) Impact of low‐temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194, 541 – 549.en_US
dc.identifier.citedreferenceColquhoun T.A. & Clark D.G. ( 2011 ) Unraveling the regulation of floral fragrance biosynthesis. Plant Signaling & Behavior 6, 378 – 381.en_US
dc.identifier.citedreferenceColquhoun T.A., Kim J.Y., Wedde A.E., Levin L.A., Schmitt K.C., Schuurink R.C. & Clark D.G. ( 2010a ) PhMYB4 fine‐tunes the floral volatile signature of Petunia x hybrida through PhC4H. Journal of Experimental Botany 62, 1133 – 1143.en_US
dc.identifier.citedreferenceColquhoun T.A., Verdonk J.C., Schimmel B.C., Tieman D.M., Underwood B.A. & Clark D.G. ( 2010b ) Petunia floral volatile benzenoid/phenylpropanoid genes are regulated in a similar manner. Phytochemistry 71, 158 – 167.en_US
dc.identifier.citedreferenceConesa A., Götz S., García‐Gómez J.M., Terol J., Talón M. & Robles M. ( 2005 ) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England) 21, 3674 – 3676.en_US
dc.identifier.citedreferenceDela G., Or E., Ovadia R., Nissim‐Levi A., Weiss D. & Oren‐Shamir M. ( 2003 ) Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high‐temperature conditions. Plant Science 164, 333 – 340.en_US
dc.identifier.citedreferenceDudareva N., Murfitt L.M., Mann C.J., Gorenstein N., Kolosova N., Kish C.M., … Wood K. ( 2000 ) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. The Plant Cell 12, 949 – 961.en_US
dc.identifier.citedreferenceFall R. & Wildermuth M.C. ( 1998 ) Isoprene synthase: from biochemical mechanism to emission algorithm. Journal of Geophysical Research: Atmospheres 103, 25599 – 25609.en_US
dc.identifier.citedreferenceFarhi M., Lavie O., Masci T., Hendel‐Rahmanim K., Weiss D., Abeliovich H. & Vainstein A. ( 2010 ) Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Molecular Biology 72, 235 – 245.en_US
dc.identifier.citedreferenceFarhi M., Marhevka E., Masci T., Marcos E., Eyal Y., Ovadis M., … Vainstein A. ( 2011 ) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering 13, 474 – 481.en_US
dc.identifier.citedreferenceHalliday K.J. & Whitelam G.C. ( 2003 ) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiology 131, 1913 – 1920.en_US
dc.identifier.citedreferenceHegland S.J., Nielsen A., Lázaro A., Bjerknes A.‐L. & Totland Ø. ( 2009 ) How does climate warming affect plant‐pollinator interactions? Ecology Letters 12, 184 – 195.en_US
dc.identifier.citedreferenceHoballah M., Stuurman J., Turlings T., Guerin P., Connétable S. & Kuhlemeier C. ( 2005 ) The composition and timing of flower odour emission by wild Petunia axillaris coincide with the antennal perception and nocturnal activity of the pollinator Manduca sexta. Planta 222, 141 – 150.en_US
dc.identifier.citedreferenceHoballah M.E., Gübitz T., Stuurman J., Broger L., Barone M., Mandel T., … Kuhlemeier C. ( 2007 ) Single gene: mediated shift in pollinator attraction in Petunia. The Plant Cell 19, 779 – 790.en_US
dc.identifier.citedreferenceJackson D., Roberts K. & Martin C. ( 1992 ) Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinum majus. The Plant Journal 2, 425 – 434.en_US
dc.identifier.citedreferenceJakobsen H.B. & Olsen C.E. ( 1994 ) Influence of climatic factors on emission of flower volatiles in situ. Planta 192, 365 – 371.en_US
dc.identifier.citedreferenceKaminaga Y., Schnepp J., Peel G., Kish C.M., Ben‐Nissan G., Weiss D., … Dudareva N. ( 2006 ) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. Journal of Biological Chemistry 281, 23357 – 23366.en_US
dc.identifier.citedreferenceKearns C.A., Inouye D.W. & Waser N.M. ( 1998 ) Endangered mutualisms: the conservation of plant‐pollinator interactions. Annual Review of Ecology and Systematics 29, 83 – 112.en_US
dc.identifier.citedreferenceKjøhl M., Nielsen A. & Stenseth N.C. ( 2011 ) Potential Effects of Climate Change on Crop Pollination. FAO, Rome.en_US
dc.identifier.citedreferenceKlahre U., Gurba A., Hermann K., Saxenhofer M., Bossolini E., Guerin P.M. & Kuhlemeier C. ( 2010 ) Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Current Biology 21, 730 – 739.en_US
dc.identifier.citedreferenceKlein A.‐M., Vaissière B.E., Cane J.H., Steffan‐Dewenter I., Cunningham S.A., Kremen C. & Tscharntke T. ( 2007 ) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274, 303 – 313.en_US
dc.identifier.citedreferenceKoeduka T., Fridman E., Gang D.R., Vassão D.G., Jackson B.L., Kish C.M., … Pichersky E. ( 2006 ) Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences of the United States of America 103, 10128 – 10133.en_US
dc.identifier.citedreferenceKoeduka T., Louie G.V., Orlova I., Kish C.M., Ibdah M., Wilkerson C.G., … Pichersky E. ( 2008 ) The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. The Plant Journal 54, 362 – 374.en_US
dc.identifier.citedreferenceKotak S., Larkindale J., Lee U., von Koskull‐Döring P., Vierling E. & Scharf K.‐D. ( 2007 ) Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10, 310 – 316.en_US
dc.identifier.citedreferenceKroner C. & Basler D. ( 2010 ) Phenology under global warming. Science 327, 1461 – 1462.en_US
dc.identifier.citedreferenceKudo G. & Ida T.Y. ( 2013 ) Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311 – 2320.en_US
dc.identifier.citedreferenceLobell D.B. & Asner G.P. ( 2003 ) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299, 1032.en_US
dc.identifier.citedreferenceLong M.C., Nagegowda D.A., Kaminaga Y., Ho K.K., Kish C.M., Schnepp J., … Dudareva N. ( 2009 ) Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. The Plant Journal 59, 256 – 265.en_US
dc.identifier.citedreferenceLoreto F. & Schnitzler J.‐P. ( 2010 ) Abiotic stresses and induced BVOCs. Trends in Plant Science 15, 154 – 166.en_US
dc.identifier.citedreferenceLoreto F., Barta C., Brilli F. & Nogues I. ( 2006 ) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell & Environment 29, 1820 – 1828.en_US
dc.identifier.citedreferenceMcClung C.R. & Davis S.J. ( 2010 ) Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Current Biology 20, R1086 – R1092.en_US
dc.identifier.citedreferenceMaeda H., Shasany A.K., Schnepp J., Orlova I., Taguchi G., Cooper B.R., … Dudareva N. ( 2010 ) RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. The Plant Cell 22, 832 – 849.en_US
dc.identifier.citedreferenceMenzel A., Sparks T.H., Estrella N. & Roy D.B. ( 2006 ) Altered geographic and temporal variability in phenology in response to climate change. Global Ecology and Biogeography 15, 498 – 504.en_US
dc.identifier.citedreferenceMittler R., Finka A. & Goloubinoff P. ( 2011 ) How do plants feel the heat? Trends in Biochemical Sciences 37, 118 – 125.en_US
dc.identifier.citedreferenceMuhlemann J.K., Klempien A. & Dudareva N. ( 2014 ) Floral volatiles: from biosynthesis to function. Plant, Cell & Environment 37, 1936 – 1949.en_US
dc.identifier.citedreferenceNegre F., Kish C.M., Boatright J., Underwood B., Shibuya K., Wagner C., … Dudareva N. ( 2003 ) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. The Plant Cell 15, 2992 – 3006.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.