Show simple item record

Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches

dc.contributor.authorPan, Qinen_US
dc.contributor.authorLi, Qiaoen_US
dc.contributor.authorLiu, Shuangen_US
dc.contributor.authorNing, Ningen_US
dc.contributor.authorZhang, Xiaolianen_US
dc.contributor.authorXu, Yingxinen_US
dc.contributor.authorChang, Alfred E.en_US
dc.contributor.authorWicha, Max S.en_US
dc.date.accessioned2015-07-01T20:56:56Z
dc.date.available2016-08-08T16:18:39Zen
dc.date.issued2015-07en_US
dc.identifier.citationPan, Qin; Li, Qiao; Liu, Shuang; Ning, Ning; Zhang, Xiaolian; Xu, Yingxin; Chang, Alfred E.; Wicha, Max S. (2015). "Concise Review: Targeting Cancer Stem Cells Using Immunologic Approaches." STEM CELLS 33(7): 2085-2092.en_US
dc.identifier.issn1066-5099en_US
dc.identifier.issn1549-4918en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/112006
dc.description.abstractCancer stem cells (CSCs) represent a small subset of tumor cells which have the ability to self‐renew and generate the diverse cells that comprise the tumor bulk. They are responsible for local tumor recurrence and distant metastasis. However, they are resistant to conventional radiotherapy and chemotherapy. Novel immunotherapeutic strategies that specifically target CSCs may improve the efficacy of cancer therapy. To immunologically target CSC phenotypes, innate immune responses to CSCs have been reported using Natural killer cells and γδ T cells. To target CSC specifically, in vitro CSC‐primed T cells have been successfully generated and shown targeting of CSCs in vivo after adoptive transfer. Recently, CSC‐based dendritic cell vaccine has demonstrated significant induction of anti‐CSC immunity both in vivo in immunocompetent hosts and in vitro as evident by CSC reactivity of CSC vaccine‐primed antibodies and T cells. In addition, identification of specific antigens or genetic alterations in CSCs may provide more specific targets for immunotherapy. ALDH, CD44, CD133, and HER2 have served as markers to isolate CSCs from a number of tumor types in animal models and human tumors. They might serve as useful targets for CSC immunotherapy. Finally, since CSCs are regulated by interactions with the CSC niche, these interactions may serve as additional targets for CSC immunotherapy. Targeting the tumor microenvironment, such as interrupting the immune cell, for example, myeloid‐derived suppressor cells, and cytokines, for example, IL‐6 and IL‐8, as well as the immune checkpoint (PD1/PDL1, etc.) may provide additional novel strategies to enhance the immunological targeting of CSCs. Stem Cells 2015;33:2085–2092en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUniversity Health Networken_US
dc.subject.otherCancer stem cellsen_US
dc.subject.otherImmunotherapyen_US
dc.subject.otherLymphocytesen_US
dc.subject.otherCytotoxic T lymphocytesen_US
dc.titleConcise Review: Targeting Cancer Stem Cells Using Immunologic Approachesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/112006/1/stem2039.pdf
dc.identifier.doi10.1002/stem.2039en_US
dc.identifier.sourceSTEM CELLSen_US
dc.identifier.citedreferenceLum HE, Miller M, Davol PA et al. Preclinical studies comparing different bispecific antibodies for redirecting T cell cytotoxicity to extracellular antigens on prostate carcinomas. Anticancer Res 2005; 25: 43 – 52.en_US
dc.identifier.citedreferenceYe XZ, Yu SC, Bian XW. Contribution of myeloid‐derived suppressor cells to tumor‐induced immune suppression, angiogenesis, invasion and metastasis. J Genet Genomics 2010; 37: 423 – 430.en_US
dc.identifier.citedreferencePanni RZ, Sanford DE, Belt BA et al. Tumor‐induced STAT3 activation in monocytic myeloid‐derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother 2014; 63: 513 – 528.en_US
dc.identifier.citedreferenceMarigo I, Bosio E, Solito S et al. Tumor‐induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010; 32: 790 – 802.en_US
dc.identifier.citedreferenceWang L, Yi T, Kortylewski M et al. IL‐17 can promote tumor growth through an IL‐6‐Stat3 signaling pathway. J Exp Med 2009; 206: 1457 – 1464.en_US
dc.identifier.citedreferenceCui TX, Kryczek I, Zhao L et al. Myeloid‐derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 2013; 39: 611 – 621.en_US
dc.identifier.citedreferenceYang DR, Ding XF, Luo J et al. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)‐Oct4‐interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. J Biol Chem 2013; 288: 16476 – 16483.en_US
dc.identifier.citedreferenceGinestier C, Liu S, Diebel ME et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 2010; 120: 485 – 497.en_US
dc.identifier.citedreferenceIliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF‐kappaB, Lin28, Let‐7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693 – 706.en_US
dc.identifier.citedreferenceLiu S, Ginestier C, Ou SJ et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71: 614 – 624.en_US
dc.identifier.citedreferenceRokavec M, Wu W, Luo JL. IL6‐mediated suppression of miR‐200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell 2012; 45: 777 – 789.en_US
dc.identifier.citedreferenceKim SY, Kang JW, Song X et al. Role of the IL‐6‐JAK1‐STAT3‐Oct‐4 pathway in the conversion of non‐stem cancer cells into cancer stem‐like cells. Cell Signal 2013; 25: 961 – 969.en_US
dc.identifier.citedreferenceNirschl CJ, Drake CG. Molecular pathways: Coexpression of immune checkpoint molecules: Signaling pathways and implications for cancer immunotherapy. Clin Cancer Res 2013; 19: 4917 – 4924.en_US
dc.identifier.citedreferenceNaidoo J, Page DB, Wolchok JD. Immune modulation for cancer therapy. Br J Cancer 2014; 111: 2214 – 2219.en_US
dc.identifier.citedreferenceLyford‐Pike S, Peng S, Young GD et al. Evidence for a role of the PD‐1:PD‐L1 pathway in immune resistance of HPV‐associated head and neck squamous cell carcinoma. Cancer Res 2013; 73: 1733 – 1741.en_US
dc.identifier.citedreferencePardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252 – 264.en_US
dc.identifier.citedreferenceSchatton T, Frank MH. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res 2008; 21: 39 – 55.en_US
dc.identifier.citedreferenceFrank MH, Sayegh MH. Immunomodulatory functions of mesenchymal stem cells. Lancet 2004; 363: 1411 – 1412.en_US
dc.identifier.citedreferenceLe Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft‐versus‐host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439 – 1441.en_US
dc.identifier.citedreferenceLe Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007; 262: 509 – 525.en_US
dc.identifier.citedreferenceMaccalli C, Volonte A, Cimminiello C et al. Immunology of cancer stem cells in solid tumours. A review. Eur J Cancer 2014; 50: 649 – 655.en_US
dc.identifier.citedreferenceSchatton T, Murphy GF, Frank NY et al. Identification of cells initiating human melanomas. Nature 2008; 451: 345 – 349.en_US
dc.identifier.citedreferenceSchatton T, Schutte U, Frank NY et al. Modulation of T‐cell activation by malignant melanoma initiating cells. Cancer Res 2010; 70: 697 – 708.en_US
dc.identifier.citedreferenceSharma P, Wagner K, Wolchok JD et al. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat Rev Cancer 2011; 11: 805 – 812.en_US
dc.identifier.citedreferenceTopalian SL, Hodi FS, Brahmer JR et al. Safety, activity, and immune correlates of anti‐PD‐1 antibody in cancer. N Engl J Med 2012; 366: 2443 – 2454.en_US
dc.identifier.citedreferenceAnsell SM, Lesokhin AM, Borrello I et al. PD‐1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015; 372: 311 – 319.en_US
dc.identifier.citedreferenceLee Y, Sunwoo J. PD‐L1 is preferentially expressed on CD44+ tumor‐initiating cells in head and neck squamous cell carcinoma. J Immunother Cancer 2014; 2 ( suppl 3 ): 270.en_US
dc.identifier.citedreferenceClarke MF, Dick JE, Dirks PB et al. Cancer stem cells—Perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66: 9339 – 9344.en_US
dc.identifier.citedreferenceCroker AK, Allan AL. Cancer stem cells: Implications for the progression and treatment of metastatic disease. J Cell Mol Med 2008; 12: 374 – 390.en_US
dc.identifier.citedreferenceChung DS, Shin HJ, Hong YK. A new hope in immunotherapy for malignant gliomas: Adoptive T cell transfer therapy. J Immunol Res 2014; 2014: 326545.en_US
dc.identifier.citedreferenceAl‐Hajj M, Becker MW, Wicha M et al. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004; 14: 43 – 47.en_US
dc.identifier.citedreferenceDean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5: 275 – 284.en_US
dc.identifier.citedreferenceDuru N, Fan M, Candas D et al. HER2‐associated radioresistance of breast cancer stem cells isolated from HER2‐negative breast cancer cells. Clin Cancer Res 2012; 18: 6634 – 6647.en_US
dc.identifier.citedreferenceWicha MS, Liu S, Dontu G. Cancer stem cells: An old idea—A paradigm shift. Cancer Res 2006; 66: 1883 – 1890; discussion 1895‐1886.en_US
dc.identifier.citedreferenceVinogradov S, Wei X. Cancer stem cells and drug resistance: The potential of nanomedicine. Nanomedicine (Lond) 2012; 7: 597 – 615.en_US
dc.identifier.citedreferenceKorkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: Attacking cancer's inflammatory roots. Clin Cancer Res 2011; 17: 6125 – 6129.en_US
dc.identifier.citedreferenceKorkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 2011; 121: 3804 – 3809.en_US
dc.identifier.citedreferenceLiu S, Cong Y, Wang D et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2014; 2: 78 – 91.en_US
dc.identifier.citedreferenceMoretta A, Locatelli F, Moretta L. Human NK cells: From HLA class I‐specific killer Ig‐like receptors to the therapy of acute leukemias. Immunol Rev 2008; 224: 58 – 69.en_US
dc.identifier.citedreferenceBaker GJ, Chockley P, Yadav VN et al. Natural killer cells eradicate galectin‐1‐deficient glioma in the absence of adaptive immunity. Cancer Res 2014; 74: 5079 – 5090.en_US
dc.identifier.citedreferenceWu A, Wiesner S, Xiao J et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: Possible targets of immunotherapy. J Neurooncol 2007; 83: 121 – 131.en_US
dc.identifier.citedreferenceWang B, Wang Q, Wang Z et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res 2014; 74: 5746 – 5757.en_US
dc.identifier.citedreferenceCastriconi R, Daga A, Dondero A et al. NK cells recognize and kill human glioblastoma cells with stem cell‐like properties. J Immunol 2009; 182: 3530 – 3539.en_US
dc.identifier.citedreferenceTseng HC, Arasteh A, Paranjpe A et al. Increased lysis of stem cells but not their differentiated cells by natural killer cells; de‐differentiation or reprogramming activates NK cells. PLoS One 2010; 5: e11590.en_US
dc.identifier.citedreferenceTallerico R, Todaro M, Di Franco S et al. Human NK cells selective targeting of colon cancer‐initiating cells: A role for natural cytotoxicity receptors and MHC class I molecules. J Immunol 2013; 190: 2381 – 2390.en_US
dc.identifier.citedreferenceBraza MS, Klein B. Anti‐tumour immunotherapy with Vgamma9Vdelta2 T lymphocytes: From the bench to the bedside. Br J Haematol 2013; 160: 123 – 132.en_US
dc.identifier.citedreferenceFournie JJ, Sicard H, Poupot M et al. What lessons can be learned from gammadelta T cell‐based cancer immunotherapy trials? Cell Mol Immunol 2013; 10: 35 – 41.en_US
dc.identifier.citedreferenceTanaka Y, Kobayashi H, Terasaki T et al. Synthesis of pyrophosphate‐containing compounds that stimulate Vgamma2Vdelta2 T cells: Application to cancer immunotherapy. Med Chem 2007; 3: 85 – 99.en_US
dc.identifier.citedreferenceTanaka Y. Human gamma delta T cells and tumor immunotherapy. J Clin Exp Hematop 2006; 46: 11 – 23.en_US
dc.identifier.citedreferenceNishio N, Fujita M, Tanaka Y et al. Zoledronate sensitizes neuroblastoma‐derived tumor‐initiating cells to cytolysis mediated by human gammadelta T cells. J Immunother 2012; 35: 598 – 606.en_US
dc.identifier.citedreferenceTodaro M, D'Asaro M, Caccamo N et al. Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 2009; 182: 7287 – 7296.en_US
dc.identifier.citedreferenceNicol AJ, Tokuyama H, Mattarollo SR et al. Clinical evaluation of autologous gamma delta T cell‐based immunotherapy for metastatic solid tumours. Br J Cancer 2011; 105: 778 – 786.en_US
dc.identifier.citedreferenceHuang Y, Shah S, Qiao L. Tumor resistance to CD8+ T cell‐based therapeutic vaccination. Arch Immunol Ther Exp (Warsz) 2007; 55: 205 – 217.en_US
dc.identifier.citedreferenceAhlers JD, Belyakov IM. Memories that last forever: Strategies for optimizing vaccine T‐cell memory. Blood 2010; 115: 1678 – 1689.en_US
dc.identifier.citedreferenceKennedy R, Celis E. Multiple roles for CD4+ T cells in anti‐tumor immune responses. Immunol Rev 2008; 222: 129 – 144.en_US
dc.identifier.citedreferenceBonnet D, Warren EH, Greenberg PD et al. CD8(+) minor histocompatibility antigen‐specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc Natl Acad Sci USA 1999; 96: 8639 – 8644.en_US
dc.identifier.citedreferenceBrown CE, Starr R, Martinez C et al. Recognition and killing of brain tumor stem‐like initiating cells by CD8+ cytolytic T cells. Cancer Res 2009; 69: 8886 – 8893.en_US
dc.identifier.citedreferenceVisus C, Ito D, Amoscato A et al. Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T‐cell‐defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Res 2007; 67: 10538 – 10545.en_US
dc.identifier.citedreferenceVisus C, Wang Y, Lozano‐Leon A et al. Targeting ALDH(bright) human carcinoma‐initiating cells with ALDH1A1‐specific CD8(+) T cells. Clin Cancer Res 2011; 17: 6174 – 6184.en_US
dc.identifier.citedreferenceVolonte A, Di Tomaso T, Spinelli M et al. Cancer‐initiating cells from colorectal cancer patients escape from T cell‐mediated immunosurveillance in vitro through membrane‐bound IL‐4. J Immunol 2014; 192: 523 – 532.en_US
dc.identifier.citedreferenceXu Q, Liu G, Yuan X et al. Antigen‐specific T‐cell response from dendritic cell vaccination using cancer stem‐like cell‐associated antigens. Stem Cells 2009; 27: 1734 – 1740.en_US
dc.identifier.citedreferenceNing N, Pan Q, Zheng F et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res 2012; 72: 1853 – 1864.en_US
dc.identifier.citedreferencePhuc PV, Nguyet NTM, Thuy DT. Effects of breast cancer stem cell extract primed dendritic cell transplantation on breast cancer tumor murine models. Ann Rev Res Biol 2011; 1: 13.en_US
dc.identifier.citedreferenceSu Y, Qiu Q, Zhang X et al. Aldehyde dehydrogenase 1 A1‐positive cell population is enriched in tumor‐initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 2010; 19: 327 – 337.en_US
dc.identifier.citedreferenceHuang EH, Hynes MJ, Zhang T et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009; 69: 3382 – 3389.en_US
dc.identifier.citedreferenceKatsuno Y, Ehata S, Yashiro M et al. Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse‐type gastric carcinoma‐initiating cells is inhibited by TGF‐beta. J Pathol 2012; 228: 391 – 404.en_US
dc.identifier.citedreferenceDuarte S, Loubat A, Momier D et al. Isolation of head and neck squamous carcinoma cancer stem‐like cells in a syngeneic mouse model and analysis of hypoxia effect. Oncol Rep 2012; 28: 1057 – 1062.en_US
dc.identifier.citedreferenceArmstrong L, Stojkovic M, Dimmick I et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 2004; 22: 1142 – 1151.en_US
dc.identifier.citedreferenceJiang F, Qiu Q, Khanna A et al. Aldehyde dehydrogenase 1 is a tumor stem cell‐associated marker in lung cancer. Mol Cancer Res 2009; 7: 330 – 338.en_US
dc.identifier.citedreferenceKim MP, Fleming JB, Wang H et al. ALDH activity selectively defines an enhanced tumor‐initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 2011; 6: e20636.en_US
dc.identifier.citedreferenceBurger PE, Gupta R, Xiong X et al. High aldehyde dehydrogenase activity: A novel functional marker of murine prostate stem/progenitor cells. Stem Cells 2009; 27: 2220 – 2228.en_US
dc.identifier.citedreferenceTanei T, Morimoto K, Shimazu K et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin‐based chemotherapy for breast cancers. Clin Cancer Res 2009; 15: 4234 – 4241.en_US
dc.identifier.citedreferenceBalber AE. Concise review: Aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: Characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 2011; 29: 570 – 575.en_US
dc.identifier.citedreferenceDylla SJ, Beviglia L, Park IK et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008; 3: e2428.en_US
dc.identifier.citedreferenceRaha D, Wilson TR, Peng J et al. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug‐tolerant tumor cell subpopulation. Cancer Res 2014; 74: 3579 – 3590.en_US
dc.identifier.citedreferenceWang Y, Li W, Patel SS et al. Blocking the formation of radiation‐induced breast cancer stem cells. Oncotarget 2014; 5: 3743 – 3755.en_US
dc.identifier.citedreferenceTodaro M, Gaggianesi M, Catalano V et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014; 14: 342 – 356.en_US
dc.identifier.citedreferenceAl‐Hajj M, Wicha MS, Benito‐Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983 – 3988.en_US
dc.identifier.citedreferenceWang SJ, Bourguignon LY. Hyaluronan and the interaction between CD44 and epidermal growth factor receptor in oncogenic signaling and chemotherapy resistance in head and neck cancer. Arch Otolaryngol Head Neck Surg 2006; 132: 771 – 778.en_US
dc.identifier.citedreferenceGhosh SC, Neslihan Alpay S, Klostergaard J. CD44: A validated target for improved delivery of cancer therapeutics. Expert Opin Ther Targets 2012; 16: 635 – 650.en_US
dc.identifier.citedreferenceSeiter S, Arch R, Reber S et al. Prevention of tumor metastasis formation by anti‐variant CD44. J Exp Med 1993; 177: 443 – 455.en_US
dc.identifier.citedreferenceCharrad RS, Li Y, Delpech B et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat Med 1999; 5: 669 – 676.en_US
dc.identifier.citedreferenceGhatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage‐independent growth of tumor cells by suppressing the phosphoinositide 3‐kinase/Akt cell survival pathway. J Biol Chem 2002; 277: 38013 – 38020.en_US
dc.identifier.citedreferenceGuo Y, Ma J, Wang J et al. Inhibition of human melanoma growth and metastasis in vivo by anti‐CD44 monoclonal antibody. Cancer Res 1994; 54: 1561 – 1565.en_US
dc.identifier.citedreferenceJin L, Hope KJ, Zhai Q et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167 – 1174.en_US
dc.identifier.citedreferenceDick J. Patent US2007237761, 2007; University Health Network, France.en_US
dc.identifier.citedreferenceYoung D. Patent WO2007098571, 2007; Arius Research Inc.en_US
dc.identifier.citedreferenceKryczek I, Liu S, Roh M et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer 2012; 130: 29 – 39.en_US
dc.identifier.citedreferenceChen S, Song X, Chen Z et al. CD133 expression and the prognosis of colorectal cancer: A systematic review and meta‐analysis. PLoS One 2013; 8: e56380.en_US
dc.identifier.citedreferenceSwaminathan SK, Olin MR, Forster CL et al. Identification of a novel monoclonal antibody recognizing CD133. J Immunol Methods 2010; 361: 110 – 115.en_US
dc.identifier.citedreferenceYin AH, Miraglia S, Zanjani ED et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002 – 5012.en_US
dc.identifier.citedreferenceHuang J, Li C, Wang Y et al. Cytokine‐induced killer (CIK) cells bound with anti‐CD3/anti‐CD133 bispecific antibodies target CD133(high) cancer stem cells in vitro and in vivo. Clin Immunol 2013; 149: 156 – 168.en_US
dc.identifier.citedreferenceDuffy MJ, Lamerz R, Haglund C et al. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer 2014; 134: 2513 – 2522.en_US
dc.identifier.citedreferenceKorkaya H, Wicha MS. HER2 and breast cancer stem cells: More than meets the eye. Cancer Res 2013; 73: 3489 – 3493.en_US
dc.identifier.citedreferenceKorkaya H, Paulson A, Iovino F et al. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120 – 6130.en_US
dc.identifier.citedreferenceKorkaya H, Paulson A, Charafe‐Jauffret E et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta‐catenin signaling. PLoS Biol 2009; 7: e1000121.en_US
dc.identifier.citedreferenceIthimakin S, Day KC, Malik F et al. HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: Implications for efficacy of adjuvant trastuzumab. Cancer Res 2013; 73: 1635 – 1646.en_US
dc.identifier.citedreferenceKorkaya H, Kim GI, Davis A et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 2012; 47: 570 – 584.en_US
dc.identifier.citedreferenceMiles DW. Recent advances in systemic therapy. When HER2 is not the target: Advances in the treatment of HER2‐negative metastatic breast cancer. Breast Cancer Res 2009; 11: 208.en_US
dc.identifier.citedreferenceSen M, Wankowski DM, Garlie NK et al. Use of anti‐CD3 x anti‐HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu+ tumors. J Hematother Stem Cell Res 2001; 10: 247 – 260.en_US
dc.identifier.citedreferenceDavol PA, Smith JA, Kouttab N et al. Anti‐CD3 x anti‐HER2 bispecific antibody effectively redirects armed T cells to inhibit tumor development and growth in hormone‐refractory prostate cancer‐bearing severe combined immunodeficient beige mice. Clin Prostate Cancer 2004; 3: 112 – 121.en_US
dc.identifier.citedreferenceBorovski T, De Sousa EMF, Vermeulen L et al. Cancer stem cell niche: The place to be. Cancer Res 2011; 71: 634 – 639.en_US
dc.identifier.citedreferenceLu H, Clauser KR, Tam WL et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 2014; 16: 1105 – 1117.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.